泛函分析 03.02 内积空间与Hilbert空间-正交与正交分解

§3.2 

3.2.1 

n广. 
,x0,y0,Schwarz 
|(x,y)| 2 (x,x)(y,y), 
1(x,y)xy 1. 
xy 
θ=cos 1 ((x,y)xy ) 
,n, 
(x,y)=0,xy. 

3.2.1X,x,yX,(x,y)=0,xy,xy. 

3.2.2()X,x,y,zX, 
x=y+zyz, 
x 2 =y 2 +z 2 (3.2.1) 
:x 2 =(y+z,y+z) 
=(y,y)+(z,y)+(y,z)+(z,z) 
=y 2 +z 2  

: 
3.2.3X,MX,xX, 
yM,(x,y)=0,xM,xM. 

: 
3.2.4X,MNX 
,xM,yN,(x,y)=0, 
MN,MN. 

3.2.2 

3.2.5MX,X 
MM,M   
M  ={yX|(x,y)=0,xM}(3.2.2) 

3.2.6X,MX, 
(1)0M  . 
(2)0M,MM  ={0},MM  = 
(3){0}  =X,X  ={0}. 
(4)MB(a,r),B(a,r)aX, 
r,M  ={0}. 
M,M  ={0}. 
(5)NM,M  N  . 
(6)M(M  )  . 

3.2.7X,MX,M  X. 
:M  ,. 
M  ,{x n }M  ,x n x(n), 
xM  (zM,(x,z)=0). 
(1)M  . 
xM  ,yM  ,α,βK, 
zM, 
(αx+βy,z)=α(x,z)+β(y,z)=0, 
αx+βyM  ,M  X. 
(2)M  . 
{x n }M  ,x n x(n), 
zM, 
(x,z)=(lim n x n ,z)=lim n (x n ,z)=0. 
xM  ,M  . 
:MX,M,M  X. 

3.2.8MX线, 
xM  yM,xyx. 
图3.2.1 正交补集
:xM  ,yM,3.2.2, 
xy 2 =x+(y) 2 =x 2 +y 2 x 2 . 
xX,yM, 
xyx, 
xM  . 
MX线,xX, 
xyx,yM. 
M线,t0(tR),tyM. 
xty 2 x 2 . 
 
xty 2 =x 2 t(x,y)t(y,x)+t 2 y 2  
02tRe(x,y)+t 2 y 2 . 
2tRe(x,y)t 2 y 2 . 
t>0,Re(x,y)12 ty 2 . 
t,Re(x,y)0. 
t<0,Re(x,y)12 ty 2 . 
t,Re(x,y)0.Re(x,y)=0. 
itt,Im(x,y)=0. 
(x,y)=0,xy. 

3.2.3 

1.31.3.12,x 
Ad(x,A): 
d(x,A)=inf{(d(x,y)|yA} 
x 0 A,使: 
xx 0 =d(x,A). 
x 0 xA, 
x 0 x. 
,, 
. 
Hilbert,. 

3.2.9X, 
x,yX,xy,x=y=1, 
αx+βy<1(α,β>0,α+β=1). 

3.2.10. 
. 
X.0<λ<1,x,yX, 
x=y=1,xy, 
(1)x=y, 
λx+(1λ)y=2λyy 
=|2λ1|y=|2λ1|<1 
(2)x=αy,|α|=1,α±1, 
λx+(1λ)y=λαy+(1λ)y 
=|αλ+(1λ)|y=|αλ+(1λ)| 
<|αλ|+|1λ|=λ+1λ=1. 
(3)xαy,αC,Schwarz 
 
|(x,y)| 2 <(x,x)(y,y), 
Re(x,y)|Re(x,y)||(x,y)|<xy=1, 
 
λx+(1λ)y 2  
=λ 2 x 2 +2λ(1λ)Re(x,y)+(1λ) 2 y 2  
=λ 2 +2λ(1λ)Re(x,y)+(1λ) 2 <[λ+(1λ)] 2 =1. 
:,C[a,b]. 
Hilbert,: 

3.2.11MHilbertH, 
xH,x 0 M,使 
xx 0 =d(x,M)=inf{xy|yM}. 
:(i). 
MH,x ¯ ¯  M. 
(1)α=inf yM {xy}.{x n }M,使 
x n xα(n)(3.2.3) 
(2)M.m,n,: 
x m +x n 2 M, 
xx m +x n 2 α(3.2.4) 
(3),(3.2.3)(3.2.4) 
x m x n  2 =2x m x 2 +2xx n  2 4xx m +x n 2  2  
2x m x 2 +2xx n  2 4α 2 . 
(4)m,n, 
x m x n  2 0, 
{x n }MCauchy. 
(5)HHilbert,M,x 0 M,使 
x n x 0 (n) 
x n xα(n),, 
x 0 x=α. 
(ii),. 
x ¯ ¯  M,M, 
α=inf yM xy>0 
,y 0 M,y 0 x 0 , 
xy 0 =α 
(1)12 (x 0 +y 0 ).: 
x12 (x 0 +y 0 )=12 (xx 0 )+12 (xy 0 ) 
12 xx 0 +12 xy 0 =α 
M,x 0 +y 0 2 M,α 
x12 (x 0 +y 0 )=α(3.2.5) 
12 (x 0 +y 0 ). 
(2)xx 0 α xy 0 α ,xx 0 α =xy 0 α =1, 
12 (xx 0 α )+12 (xy 0 α )=1α xx 0 +y 0 2 =1α α=1. 
Hilbert.. 
13.2.11, 
MHilbertH, 
xH,x 0 M,x. 
MHilbertH,. 
2,. 
M,x,xM 
y,. 
3, 
M,, 
((3.2.5)). 
,M, 
,. 
4X: 
MX,xX,xM 
. 
M,; 
使,. 
(参阅 汪林 《泛函分析中的反例》p.51)

3.2.4Hilbert 

, 
使. 
广Hilbert. 

3.2.12()HHilbert,MH, 
xH,x 0 MyM  ,使 
x=x 0 +y(3.2.6) 
x 2 =x 0  2 +y 2 (3.2.7) 
: 
(i). 
(1)MHilbertH(),3.2.11, 
xH,x 0 M,使 
xx 0 =d(x,M)=inf zM {xz}. 
(2)y=xx 0 ,yM  . 
图 3.2.3 最佳逼近,正交分解
zM,yz=x(x 0 +z)xx 0 =y 
3.2.8,yM  . 
:x 0 MyM  ,使x=x 0 +y. 
(ii),. 
x=x  0 +y  ,x  0 M,y  M  . 
x=x 0 +y,x  0 x 0 =y  y. 
 
y  yM  M  ={0}, 
y  =y,x  0 =x. 
(3)x 0 MyM  ,3.2.2, 
x 2 =x 0  2 +y 2  
. 
1MH线. 
xH(x ¯ ¯  M),x 0 M使 
x=x 0 +y,x 0 M,yM  . 
x 0 xM. 
x 0 xM,(xx 0 )M. 
H=MM  , 
. 
(2)HilbertH,MH, 
Riesz(2.3.12). 
Riesz:X 0 X,X 0 X,ε>0, 
yX,使y=1,zX 0 ,yz>1ε. 
Hilbert,X 0 H,3.2.12, 
yX  0 ,y=1, 
3.2.8yX  0 ,zX 0  
yzy. 
d(y,X 0 )y. 
X 0 ,0X 0 , 
d(y,X 0 )=y. 
,HilbertH,X 0 H, 
yX,y=1,(,yX  0 ), 
d(y,X 0 )=y=1. 
Riesz>1ε1. 

3.2.13X 0 HilbertH线,X  0 =X 0 . 
:(1)3.2.6(6):X 0 X  0 . 
(2)xX  0 ,xX 0 . 
(3.2.12), 
x=x 0 +y,x 0 X 0 ,yX  0 . 
yX  0 ,xX  0 ,(x,y)=0. 
0=(x,y)=(x 0 +y,y)=(x 0 ,y)+(y,y)(3.2.8) 
x 0 X 0 ,yX  0 ,(x 0 ,y)=0. 
(3.2.8)y=0. 
y=0,x=x 0 X 0 .X  0 =X 0 . 
3.2.73.2.6: 

3.2.14X 0 HilbertH线, 
(1)X  0 =X 0  ¯ ¯ ¯ ¯  ,X 0  ¯ ¯ ¯ ¯  X 0 ; 
(2)X  0 ={0}X 0 H. 

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值