泛函分析 03.03 内积空间与Hilbert空间 - 正交系和正交投影

§3.3 

n,ne 1 ,e 2 ,,e n , 
n, 
. 
线 
x=α 1 e 1 +α 2 e 2 ++α n e n , 
α i =(x,e i ),i=1,2,,nxe i . 
 
x=( i=1 n |(x,e i )| 2 ) 12  . 
Hilbert. 
 
 
, 
,(Fourier). 

3.3.1 

. 
3.3.1{x α } αI X 
.αβ,(x α ,x β )=0, 
{x n } αI X. 
x α =1,αI,{x α }. 
,线,. 

3.3.2{e 1 ,,e k }X, 
{e 1 ,,e k }线.Xk, 
{e 1 ,,e k },xX 
x= n=1 k (x,e n )e n . 
:α 1 e 1 ++α k e k =0,{e 1 ,,e k }线, 
α i =0(i=1,,k). 
{e 1 ,,e k },, 
. 
:(1){e 1 ,,e k } 
α 1 e 1 ++α k e k =0. 
e m (m=1,,k),{e 1 ,,e k } 
, 
0=( n=1 k α n e n ,e m )= n=1 k α n (e n ,e m )=α m (e m ,e m ). 
e m 0α m =0.{e 1 ,,e k }线. 
(2)Xk,{e 1 ,,e k }. 
{e 1 ,,e k }线,xX 
{e 1 ,,e k }线.: 
x= n=1 k λ n e n . 
e m (m=1,,k), 
(x,e m )=( n=1 k λ n e n ,e m )= n=1 k λ n (e n ,e m )=λ m , 
. 
, 
x{e 1 ,,e k }线. 
e n α n =(x,e n )(xe n ). 
线 
便,. 

3.3.3{x α } αI X, 
{x α } αI 线. 
:,线(M线 
,M线(II 
II.7)),3.3.2线. 
,. 

3.3.4L 2 [1,1],: 
(x,y)= 1 1 x(t)y(t) ¯ ¯ ¯ ¯ ¯ ¯  dx, 
x=x(t),y=y(t)L 2 [1,1]. 
{1,cosπt,sinπt,,coskπt,sinkπt,} 
L 2 [1,1]. 
0.1.6Legendre 
⎧ ⎩ ⎨ ⎪ ⎪ (1x 2 )y  +2xy  =λy,(1<x<1)y(1)<,y(1)<.  
图 0.1.1 Legendre多项式
:λ n =n(n+1)(n=1,2,), 
:P n =12 n n! d n dx n  (x 2 1) n . 
P n Legendre, 
 1 1 P n (x)P m (x) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  dx=0(mn). 
LegendreL 2 [1,1]. 

3.3.2 

3.3.5{e k } n k=1 X, 
xX,a 1 ,,a n n,a k =(x,e k ) 
(k=1,2,,n), 
x k=1 n a k e k  
. 
{e k } n k=1 ,e i , 
(x k=1 n (x,e k )e k ,e i )=(x,e i )(x,e i )=0, 
x k=1 n (x,e k )e k e i (i=1,2,,n). 
, 
x k=1 n a k e k  2  
=x k=1 n (x,e k )e k + k=1 n ((x,e k )a k )e k  2  
=x k=1 n (x,e k )e k  2 + k=1 n ((x,e k )a k )e k  2  
=x k=1 n (x,e k )e k  2 + k=1 n |(x,e k )a k | 2  
a k =(x,e k )(k=1,2,,n), 
x k=1 n a k e k . 
1x k=1 n (x,e k )e k {e 1 ,e 2 ,,e n } 
M. 
图 3.3.1 正交投影
2x 0 = k=1 n (x,e k )e k xM.xMxx 0 . 

3.3.3Fourier 

3.3.6x(t)[π,π],x(π)=x(π). 
,x(t)Fourier,Fourier 
x(t). 
x(t)=a 0 2 + k=1  a k coskt+b k sinkt(3.3.1) 
 
a 0 2 =12π  π π x(t)dt, 
a k =1π  π π x(t)cosktdt, 
b k =1π  π π x(t)sinktdt. 
fourier展开

(Hilbert)L 2 [π,π], 
Fourier: 
3.3.7线L 2 [π,π] 
(x,y)= π π x(t)y(t) ¯ ¯ ¯ ¯ ¯ ¯  dt. 
: 
{e n }={12π − −    ,1π    cost,1π    sint,,1π    coskt,1π    sinkt,}(3.3.2) 
L 2 [π,π](). 
() 

3.3.6,Fourier: 
a 0 2 =12π  π π x(t)dt=12π − −    (x,12π − −    ); 
a k =1π  π π x(t)cosktdt=1π    (x,1π    coskt); 
b k =1π  π π x(t)sinktdt=1π    (x,1π    sinkt); 
(3.3.1)x(t)Fourier: 
x(t)(x,12π − −    )12π − −    + k=1  (x,1π    coskt)1π    coskt+(x,1π    sinkt)1π    sinkt, 
x(x,e k )(k=1,2,): 
x(t) k=1  (x,e k )e k (3.3.3) 
,Fourier. 

3.3.8{e n }  n=1 X. 
xX, 
 n=1  (x,e n )e n  
x{e n }Fouriere, 
(x,e n )x{e n }Fourier. 
Fourierx 
 n=1  (x,e n )e n , 
{e n }  n=1 , 
3.3.6. 
Fourier(x,e n )x{e n }. 
fourier展开
: 
(1),3.3.8xFourier n=1  (x,e n )e n ? 
(2),()? 
(3),x? 

3.3.4BesselFourier 

{x a } aI . 
,: 
{x n }  n=1 . 

3.3.9(Bessel){e k }  k=1 X 
,xX, 
 k=1  |(x,e k )| 2 x 2 (3.3.4) 
:,. 
:n, 
x k=1 n (x,e k )e k  2 =(x k=1 n (x,e k )e k ,x k=1 n (x,e k )e k ) 
=(x,x) k=1 n (x,e k )(e k ,x) k=1 n (x,e k ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  (x,e k )+ k=1 n |(x,e k )| 2  
=x 2  k=1 n (x,e k )(e k ,x)=x 2  k=1 n |(x,e k )| 2 0, 
 k=1 n |(x,e k )| 2 x 2 . 
n, 
 k=1  |(x,e k )| 2 x 2 . 
Fourier, 
x 2 . 

3.3.10{e n }  n=1 X, 
xX, 
(x,e n )0(n) 
(3.3.4), 
xX,(x,e n )0(n) 
:,{e n }  n=1 X 
xX, 
(x,e n )0(n) 
{e n }0(e n  ω 0). 

3.3.11(RiemannLebesgue) 
x(t)L 2 [π,π], 
lim n  π π x(t)sinntdt=0,lim n  π π x(t)cosntdt=0 (3.3.5) 
:3.3.7,{sinnt},{cosnt} 
L 2 [π,π],3.3.10x(t) 
Fourier,. 
:x(t),Fourier 
Riemann(:5.5.11). 

Bessel,: 
3.3.12{e α }(αI)X, 
xX,xFourier 
{(x,e α )|αI}. 

3.3.13HHilbert,{e n }H, 
{α n }, n=1  α n e n  
 n=1  |α n | 2 <. 
, 
 n=1  α n e n  2 = n=1  |α n | 2 . 
. 
 n=1  α n e n (x= n=1  α n e n ),: 
 n=1  |α n | 2 <. 
{e n }, 
(e n ,e m )=0,nm, 
(e n ,e n )=1,n=1,2,. 
: 
(1)α m xFourier(x,e m ). 
(2)Bessel. 
. 
 n=1  α n e n ,x= n=1  α n e n . 
mN,, 
(x,e m )=( n=1  α n e n ,e m )=(lim k  n=1 k α n e n ,e m ) 
=lim k ( n=1 k α n e n ,e m )=α m  
(km) 
Bessel 
 n=1  |α n | 2 = n=1  |(x,e n )| 2 x 2 <. 
. 
: n=1  |α n | 2 < n=1  α n e n . 
(1),k 
{x k }={ n=1 k α n e n } 
 
(2),HHilbert, 
HCauchy. 
(3): 
x k x j 0,(k,j). 
. 
 n=1  |α n | 2 <. 
kN, 
x k = n=1 k α n e n , 
j,kN,k>j,{e n }, 
x k x j  2 = n=j+1 k α n e n  2 = n=j+1 k |α n | 2 . 
 n=1  |α n | 2 ,{x k }H 
Cauchy, n=1  α n e n H. 
,{e n }, 
 n=1  α n e n  2 =lim k  n=1 k α n e n  2 =lim k  n=1 k |α n | 2  
= n=1  |α n | 2 . 
: 

3.3.14HilbertH, n=1  α n e n  
{α n }l 2 . 

3.3.15HHilbert,{e n }H 
,xH,xFourier 
 n=1  (x,e n )e n . 
:3.3.9(Bessel),Fourier 
,x 2 , 
3.3.13,. 
13.3.153.3.3 
Fourier. 
2Hilbert, 
. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值