选取了2000年1月至2020年5月的纳斯达克指数每个工作日的收盘价作为研究对象,绘制其时序图并作出初步分析。由原始序列时序图可以看出,该时间序列具有较强的趋势性。

为确定其是否为白噪声,进行Box-test检验,检验结果显示P值小于0.05,显然原始序列不是白噪声。

为了拟合股票价格走势,拟合模型是重中之重,为比较不同模型的拟合效果,进行了不同模型的拟合对比分析,主要思路如下:
一、数据的录入,对原数据进行预处理;
二、利用非线性回归的方法进行建模;
三、利用Holt-winters三参数方法进行建模;
四、通过自相关图和ADF检验,检验处理后数据的平稳性,进行下一步ARIMA建模;
五、在同方差的假定下拟合ARIMA模型,根据AIC准则进行定阶;
六、对第五步中的残差进行检验是否存在异方差性,拟合ARCH-GARCH模型;
七、利用rugarch包对ARIMA(3,1,2)-GARCH(1,2)模型进行拟合和预测。
模型拟合
1.非线性回归模型
考虑到纳斯达克指数走势呈现出明显的非线性特点,故使用二次曲线进行拟合。结果显示,开盘价的二次项回归系数为7.198,一次项回归系数为-2.887,它的系数在p<0.01的水平下显著不为0。总的来说,自变量解释了收盘价86.69%方差。

利用二次曲线模型进行拟合并做出预测,并根据AIC准则进行模型拟合度的判定,为此,选择记录了每次AIC信息。最终拟合效果图如下: