的garch预测_纳斯达克指数拟合预测(R)

本文基于2000年至2020年纳斯达克指数数据,通过非线性回归、Holt-winters、ARIMA及GARCH模型进行拟合预测。经过分析,ARIMA(3,1,2)-GARCH(1,2)模型显示出最佳拟合效果,揭示了指数受经济事件影响的异方差性,并对未来走势进行了预测。" 4645761,179830,OPC Server注册教程:BSOPCServer的实现,"['OPC服务器', 'COM组件', '服务器开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

选取了2000年1月至2020年5月的纳斯达克指数每个工作日的收盘价作为研究对象,绘制其时序图并作出初步分析。由原始序列时序图可以看出,该时间序列具有较强的趋势性。

d043d3bfc0f8affe9fbdfcd1c7e276fd.png
股市收盘价时序图

为确定其是否为白噪声,进行Box-test检验,检验结果显示P值小于0.05,显然原始序列不是白噪声。

f00529fd5771c6187534de580957f2db.png

为了拟合股票价格走势,拟合模型是重中之重,为比较不同模型的拟合效果,进行了不同模型的拟合对比分析,主要思路如下:

一、数据的录入,对原数据进行预处理;

二、利用非线性回归的方法进行建模;

三、利用Holt-winters三参数方法进行建模;

四、通过自相关图和ADF检验,检验处理后数据的平稳性,进行下一步ARIMA建模;

五、在同方差的假定下拟合ARIMA模型,根据AIC准则进行定阶;

六、对第五步中的残差进行检验是否存在异方差性,拟合ARCH-GARCH模型;

七、利用rugarch包对ARIMA(3,1,2)-GARCH(1,2)模型进行拟合和预测。

模型拟合

1.非线性回归模型

考虑到纳斯达克指数走势呈现出明显的非线性特点,故使用二次曲线进行拟合。结果显示,开盘价的二次项回归系数为7.198,一次项回归系数为-2.887,它的系数在p<0.01的水平下显著不为0。总的来说,自变量解释了收盘价86.69%方差。

ac6ea7e6ccc1a86c2286fec19d82162b.png

利用二次曲线模型进行拟合并做出预测,并根据AIC准则进行模型拟合度的判定,为此,选择记录了每次AIC信息。最终拟合效果图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值