matlab lyap,Matlab的Lyapunov、Sylvester和Riccati方程的Matlab求解

本文介绍了如何使用Matlab的lyap、lyap2、dlyap和are函数解决连续和离散Lyapunov方程、Sylvester方程以及Riccati方程。通过实例展示了这些函数的使用方法,包括数值解和符号解。
摘要由CSDN通过智能技术生成

一、连续Lyapunov方程连续Lyapunov方程可以表示为

Lyapunov方程来源与微分方程稳定性理论,其中要求C为对称正定的n×n方阵,从而可以证明解X亦为n×n对称矩阵,这类方程直接求解比较困难,不过有了Matlab中lyap()函数,就简单多了。

>> A=[1 2 3;4 5 6;7 8 0]

A =

1     2     3

4     5     6

7     8     0

>> C=-[10 5 4;5 6 7;4 7 9]

C =

-10    -5    -4

-5    -6    -7

-4    -7    -9

>> X=lyap(A,C)

X =

-3.9444    3.8889    0.3889

3.8889   -2.7778    0.2222

0.3889    0.2222   -0.1111

二、Lyapunov方程的解析解利用Kroncecker乘积的表示方法,可以将Lyapunov方程写为

function x=lyap2(A,C)

%Lyapunov方程的符号解法

n=size(C,1);

A0=kron(A,eye(n))+kron(eye(n),A);

c=C(:);

x0=-inv(A0)*c;

x=reshape(x0,n,n)

例子

>>A=[1 2 3;4 5 6;7 8 0];

>>C=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值