一、连续Lyapunov方程连续Lyapunov方程可以表示为
Lyapunov方程来源与微分方程稳定性理论,其中要求C为对称正定的n×n方阵,从而可以证明解X亦为n×n对称矩阵,这类方程直接求解比较困难,不过有了Matlab中lyap()函数,就简单多了。
>> A=[1 2 3;4 5 6;7 8 0]
A =
1 2 3
4 5 6
7 8 0
>> C=-[10 5 4;5 6 7;4 7 9]
C =
-10 -5 -4
-5 -6 -7
-4 -7 -9
>> X=lyap(A,C)
X =
-3.9444 3.8889 0.3889
3.8889 -2.7778 0.2222
0.3889 0.2222 -0.1111
二、Lyapunov方程的解析解利用Kroncecker乘积的表示方法,可以将Lyapunov方程写为
function x=lyap2(A,C)
%Lyapunov方程的符号解法
n=size(C,1);
A0=kron(A,eye(n))+kron(eye(n),A);
c=C(:);
x0=-inv(A0)*c;
x=reshape(x0,n,n)
例子
>>A=[1 2 3;4 5 6;7 8 0];
>>C=