matlab中矩阵方程的求解器,矩阵方程的计算求解(Matlab实现)

一、Lyapunov方程的计算求解

1、连续Lyapunov方程

连续Lyapunov方程可以表示为:

AX + XA* = -C % 其中A*是A的转置

Lyapunov方程源于微分方程稳定性理论,其中要求-C为对称正定的nxn矩阵,从而可以证明解X亦为nxn对称矩阵。Lyapunov类的方程求解是很困难的,可以利用Matlab控制系统工具箱中提供的lyap函数求解,调用格式为

X = lyap(A, C)

matlab代码:

A = [1 2 3;4 5 6;7 8 0]; C = -[10 5 4;5 6 7;4 7 9];

X = lyap(A, C)

norm(A*X + X*A' + C) % 验证解的情况

% 结果:

>> Matrix_equation

X =

-3.9444 3.8889 0.3889

3.8889 -2.7778 0.2222

0.3889 0.2222 -0.1111

ans =

2.3211e-14

2、Lyapunov方程的解析解

3、离散 Lyapunov方程

离散Lyapunov方程可以表示为:

AXA* - X + Q = 0 % 其中A*是A的转置矩阵

该方程可以由MATLAB控制系统工具箱的dlyap函数直接求解。该函数的调用格式为:

X = dlyap(A, Q)

matlab代码为:

A = [1 2 3;4 5 6;7 8 0]; Q = -[10 5 4;5 6 7;4 7 9];

X = dlyap(A, Q)

norm(A*X*A'- X + Q) % 精度验证

% 结果:

X =

-2.8439 3.2500 -3.0501

3.2500 -3.3780 2.8107

-3.0501 2.8107 -0.5462

ans =

7.6172e-14

二、Sylvester方程的计算求解

Sylvester方程的一般形式为:

AX + XB = -C

其中,A为nxn矩阵,B为mxm矩阵,C和X均为nxm矩阵。该方程又称为广义的Lyapunov方程。仍然可以用Matlab中控制系统工具箱中的lyap函数直接求解该方程。函数的一般调用格式为:

X = lyap(A,B,C)

该函数采用的是Schur分解的数值解法求解方程。

matlab代码:

A = [1 2 3;2 4 1;4 6 1];

B = [2 3 5;2 7 5;5 4 3];

C = -[3 4 2;3 2 4;2 0 9];

X = lyap(A, B, C)

norm(A*X + X*B + C )

% 结果:

X =

-9.5651 10.3207 -4.3218

1.4515 -1.7102 1.3843

9.9199 -9.7210 4.2467

ans =

3.9005e-14

三、Riccati方程的计算求解

Riccati方程是一类很著名的二次型矩阵方程式,其一般形式为:

A*X + XA - XBX + C = 0 % A*是A的转置矩阵

由于含有未知矩阵X的二次项, 所以Riccati方程的求解数学上要比Lyapunov方程更难。Matlab的控制系统工具箱提供了现成函数are,调用形式如下:

X = are(A, B, C)

matlab代码:

A = [1 2 3;2 4 1;4 6 1];

B = [-2 3 5;2 7 5;5 4 3];

C = [3 4 2;3 2 4;2 0 9];

X = are(A, B, C)

norm(A'*X + X*A - X*B*X + C)

% 结果:

X =

-0.1180 1.4662 -0.6059

0.4316 1.4014 0.0150

0.9982 -0.4684 2.0600

ans =

3.2899e-14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值