opencv检测相交点_目标检测中的NMS

非极大值抑制(NMS)用于目标检测中,提取高置信度的检测框并抑制误检。文章介绍了NMS的基本流程,以及在密集目标检测中可能存在的问题,提出了Soft-NMS和Adaptive NMS作为改进方案。此外,还探讨了处理倾斜框和多边形目标的NMS方法,并提到了基于分割区域的NMS,其IOU计算采用MMI。
摘要由CSDN通过智能技术生成

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,用于目标检测中,就是提取置信度高的目标检测框,而抑制置信度低的误检框。一般来说,用在当解析模型输出到目标框时,目标框会非常多,具体数量由anchor数量决定,其中有很多重复的框定位到同一个目标,nms用来去除这些重复的框,获得真正的目标框。如下图所示,人、马、车上有很多框,通过nms,得到唯一的检测框。

2c27d92209c661e61e072cda2b06d57d.png

正矩形框的nms

标准的nms

具体算法流程如下图:

d44798640e1421db0e363d97d763fcda.png

soft-nms

NMS算法中的最大问题就是它将相邻低置信度的检测框的分数均强制归零,即 S ß S-si ;如果同类目标比较密集,存在遮挡时,如密集人群,用这种方式处理很容易产生漏检。soft-nms吸取了nms的教训,在算法执行过程中不是简单的对IoU大于阈值的检测框删除,而是降低得分。算法流程如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值