非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,用于目标检测中,就是提取置信度高的目标检测框,而抑制置信度低的误检框。一般来说,用在当解析模型输出到目标框时,目标框会非常多,具体数量由anchor数量决定,其中有很多重复的框定位到同一个目标,nms用来去除这些重复的框,获得真正的目标框。如下图所示,人、马、车上有很多框,通过nms,得到唯一的检测框。
正矩形框的nms
标准的nms具体算法流程如下图:
soft-nmsNMS算法中的最大问题就是它将相邻低置信度的检测框的分数均强制归零,即 S ß S-si ;如果同类目标比较密集,存在遮挡时,如密集人群,用这种方式处理很容易产生漏检。soft-nms吸取了nms的教训,在算法执行过程中不是简单的对IoU大于阈值的检测框删除,而是降低得分。算法流程如下图: