2 旋转任意角度_三个视频搞定三角函数(准备篇):任意角、轴线角、象限角、终边相同的角、弧度制...

本文介绍了三角函数中的核心概念,包括任意角、终边相同的角以及弧度制。通过数形结合的方式,阐述了任意角的概念,强调了直角坐标系在理解角旋转中的作用。此外,还提到了终边相同的角在度数和三角函数值上的关系,以及象限角和轴线角的定义。最后,文章简要讨论了弧度制的应用,包括弧度与角度的互换以及扇形的弧长和面积计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c43df337afc0ab207be0eedc1c247a9b.png

高中阶段,三角函数具有很重要的地位。实际学习中,一部分同学因三角公式多,产生畏难心理。

把握数形结合,抓住概念理解,理清三角公式之间内在联系,是学习三角函数化难为易的重要法门。

先看视频,

再学知识点,

重看一遍视频,

效果会不错哟。

01

任意角、终边相同的角

视频1:任意角、终边相同的角

1、为什么要建立任意角概念?

c9acfea66c740b784cf1cadf6b792203.png 98e37de1ccc56c298d9a674284d5c03e.png b7c35decc422c996ba8e9f20d29ba910.png

上述这些角,范围不再限于0度至360度范围之内,而且有方向。如何解决上述运动旋转角度的度量?

数学的办法就是用运动的观点来看待角的变化,从而推广角的概念形成任意角。

2、任意角概念:一条射线绕着它的端点旋转所形成的图形。为明确旋转量与旋转方向,规定如下:

632b490dae98ea65ba9f742649a68298.png 4a835fe4e3a2717a109e281ed370a681.png

3、方法:把角放入直角坐标系中,利用直角坐标系这一工具来研究。规则是:让角的顶点与坐标原点重合,让角的始边与直角坐标系X轴的非负半轴重合。

结果:角的终边与角的度数之间建立了对应关系,使角具有了代数与几何的双重意义。

ff277280114ecd4da1f6d16a26e2dbbd.png c9ec0eedd09a4ad7e6f7a82a8a1df8e4.png

4、终边相同的角。

(1)在后续学习中,我们会知晓:

终边相同的角的三角函数完全相同。

(这样可以把角的研究范围转化到0至360度范围之内。)

(2)数量上有联系:两个终边相同的角的度数相差360度整数倍;

417a8d560f5ce0ba46cbc6e8b5755bd6.png 3c2dcf8901aec329d5b504e308bab2fc.gif ef1718d9d93afdd2b95c113642be6aca.png

终边相同的角不一定相等,

相等的角终边一定相同。  

02

象限角、轴线角

视频2:象限角的讲解

3、终边落在哪一象限就是哪一象限的角。

152c626dfb22b1bf1443666d95f6832a.png dc7b02b7b2a611f6b412d44ae9ae830f.png

备注:在后续求解角的范围时,我们的结果表述,一般先写出0度至360度范围内角的范围,再迭加360度整数倍。

4、轴线角:终边在坐标轴上的角。

9ce598ae104e3f11025abf0bd80672f3.png bf002b1ce46b833e7d1bc2b4d323c691.png 8379d77e0b2dbc90cd3608bdeb0491f0.png

03

弧度制与扇形面积计算

视频3:弧度制与弧度制应用。

4、理解弧度概念,进而习惯弧度制下角的运算。

668e48c1743fd9731bd0c0e4ef0f5a4f.png a4fa5a690ff19db622180bfa4b2defe6.png

实际学习中注意两点;

(1)准确熟练进行角度与弧度的互化。

961612df8d2344388f5fcfed59bb6c0c.png c2396ca936d061ce2eecfd2c60316ad7.png 31d1e2add3f983df5264e2e629d17bd3.png

(2)弧度制下的角可以与数轴上点一一对应起来。对于弧度制表示的角放在坐标系中时,要快速准确判定终边的位置。

a37f29f5a474c9879d4902ae58d3224d.png

5、弧度制下,扇形的弧长、面积计算公式要能熟练准确运用。

6eb4d794bf951ffc55743d11648fe53b.png

备注:扇形可以看作是一个曲底的等腰三角形,圆弧相当于三角形的底、半径相当于底上的高。这样类比,公式在形式上就与三角形面积公式很好的吻合了。

88c043a5c0858740a37dd71d998dc30f.png 229c468069fc696ede0a1e4d1db9a60a.png

人生有缘才相遇 扫码相识更有趣

306b71b68230f93d330e2e743e76a09b.png

  人生有缘

  扫码相识

  视频学习

  天然有趣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值