
高中阶段,三角函数具有很重要的地位。实际学习中,一部分同学因三角公式多,产生畏难心理。
把握数形结合,抓住概念理解,理清三角公式之间内在联系,是学习三角函数化难为易的重要法门。
先看视频,
再学知识点,
重看一遍视频,
效果会不错哟。
01
任意角、终边相同的角
视频1:任意角、终边相同的角
1、为什么要建立任意角概念?



上述这些角,范围不再限于0度至360度范围之内,而且有方向。如何解决上述运动旋转角度的度量?
数学的办法就是用运动的观点来看待角的变化,从而推广角的概念形成任意角。
2、任意角概念:一条射线绕着它的端点旋转所形成的图形。为明确旋转量与旋转方向,规定如下:


3、方法:把角放入直角坐标系中,利用直角坐标系这一工具来研究。规则是:让角的顶点与坐标原点重合,让角的始边与直角坐标系X轴的非负半轴重合。
结果:角的终边与角的度数之间建立了对应关系,使角具有了代数与几何的双重意义。


4、终边相同的角。
(1)在后续学习中,我们会知晓:
终边相同的角的三角函数完全相同。
(这样可以把角的研究范围转化到0至360度范围之内。)
(2)数量上有联系:两个终边相同的角的度数相差360度整数倍;



终边相同的角不一定相等,
相等的角终边一定相同。
02
象限角、轴线角
视频2:象限角的讲解
3、终边落在哪一象限就是哪一象限的角。


备注:在后续求解角的范围时,我们的结果表述,一般先写出0度至360度范围内角的范围,再迭加360度整数倍。
4、轴线角:终边在坐标轴上的角。



03
弧度制与扇形面积计算
视频3:弧度制与弧度制应用。
4、理解弧度概念,进而习惯弧度制下角的运算。


实际学习中注意两点;
(1)准确熟练进行角度与弧度的互化。



(2)弧度制下的角可以与数轴上点一一对应起来。对于弧度制表示的角放在坐标系中时,要快速准确判定终边的位置。

5、弧度制下,扇形的弧长、面积计算公式要能熟练准确运用。

备注:扇形可以看作是一个曲底的等腰三角形,圆弧相当于三角形的底、半径相当于底上的高。这样类比,公式在形式上就与三角形面积公式很好的吻合了。


人生有缘才相遇 扫码相识更有趣

人生有缘
扫码相识
视频学习
天然有趣