
最近想整理一下关于信用评分校准的一些知识,发现求是汪老师的文章已经很详细、全面地介绍了这块的内容,于是仔细读了一遍他的文章,并对其中的重点作一下笔记。求是汪老师的文章链接是信用评分卡模型分数校准。
一.分数校准的业务应用场景
分数校准主要应用在3种场景下。
1.分群子评分卡作分数融合。
2.降级备用模型和主模型分数校准。
3.客群变化对原模型分数进行修正。
其实还有一种情况需要校准模型,就是对样本进行抽样建模之后需要对违约概率作校准之后再映射成评分。其本质和上面第3种情况是一样的,都是开发样本的Odds与实际样本的Odds不一致,导致开发样本的坏样本占与比实际情况不一致。
二.概率分数校准的方法
概率分数校准的方法主要有两种。
1.Platt scaling使用LR模型对模型输出的值做拟合。适用于上 述场景1和场景2。
2.评分卡分数的错误分配。适用于上述场景3。
对于方法一,比如现在有两个分数score1和score2,各分数段代表的违约概率不一致,需要进行校准。将score1和样本的y标签进行逻辑回归输出概率值score1_cal,将score2和样本的y标签进行逻辑回归输出概率值score2_cal。score1_cal和score2_cal就在同一尺度上了。
深入思考的话,由于逻辑回归本质上就是将违约概率p、对数几率odds以及信用分数进行映射,如果映射过程中指定