评分模型应用案例_聊一聊评分模型校准

本文介绍了评分模型校准的业务应用场景,包括分群子评分卡融合、模型降级备用及客群变化修正。重点讲述了概率分数校准的Platt Scaling和评分卡错误分配方法,并探讨了逻辑回归中截距与ln(odds)的关系,以及LR与其他分类器输出概率的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2d2769d9d8088f3f68f2f014d56fd2e0.png

最近想整理一下关于信用评分校准的一些知识,发现求是汪老师的文章已经很详细、全面地介绍了这块的内容,于是仔细读了一遍他的文章,并对其中的重点作一下笔记。求是汪老师的文章链接是信用评分卡模型分数校准。

一.分数校准的业务应用场景

分数校准主要应用在3种场景下。

1.分群子评分卡作分数融合。

2.降级备用模型和主模型分数校准。

3.客群变化对原模型分数进行修正。

其实还有一种情况需要校准模型,就是对样本进行抽样建模之后需要对违约概率作校准之后再映射成评分。其本质和上面第3种情况是一样的,都是开发样本的Odds与实际样本的Odds不一致,导致开发样本的坏样本占与比实际情况不一致。

二.概率分数校准的方法

概率分数校准的方法主要有两种。

1.Platt scaling使用LR模型对模型输出的值做拟合。适用于上 述场景1和场景2。

2.评分卡分数的错误分配。适用于上述场景3。

对于方法一,比如现在有两个分数score1和score2,各分数段代表的违约概率不一致,需要进行校准。将score1和样本的y标签进行逻辑回归输出概率值score1_cal,将score2和样本的y标签进行逻辑回归输出概率值score2_cal。score1_cal和score2_cal就在同一尺度上了。

深入思考的话,由于逻辑回归本质上就是将违约概率p、对数几率odds以及信用分数进行映射,如果映射过程中指定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值