Vision Transformer计算复杂度详细推导过程

Vision Transformer的计算复杂度取决于多个因素,如模型结构、输入图像的大小、Transformer层数等。具体来说,假设我们有一个输入图像大小为$H \times W \times C$,Transformer模型有$L$层,每层有$d_{model}$维词向量和$d_{ff}$维前馈网络,那么其计算复杂度为$O(L(HWCd_{model} + d_{model}^2d_{ff}))$。

首先,我们将输入图像展平成一个长度为$HWC$的词向量序列。对于每一层Transformer,计算词向量的自注意力和前馈网络的复杂度分别为$O(HWCd_{model})$和$O(d_{m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值