引言
Transformer 模型的计算时间复杂度主要由其核心组件——自注意力机制(Self-Attention Mechanism) 和 前馈神经网络(Feed-Forward Neural Network) 决定。
1. 自注意力机制的时间复杂度
输入序列长度:
设输入序列长度为 n,嵌入维度为 d。
自注意力的计算步骤:
生成查询(Query,Q)、键(Key,K)和值(Value,V)矩阵,对每个输入位置,进行线性变换生成 Q、K、V。时间复杂度为 O(n·d²),因为需要进行矩阵乘法操作,涉及到嵌入维度 d。
计算注意力权重:
计算 Q 和 K 的点积,得到大小为 n×n 的注意力矩阵。时间复杂度为 O(n²·d),因为需要对每对位置计算 d 维向量的点积。
应用注意力权重到 V:
将注意力权重矩阵与 V 矩阵相乘。时间复杂度为 O(n²·d)。
总时间复杂度:
自注意力机制的总时间复杂度为 O(n²·d)。
2. 前馈神经网络的时间复杂度
结构:
前馈网络通常由两个全连接层组成,中间有激活函数(如 ReLU)。每个位置独立地通过前馈网络进行计算。
时间复杂度:
对于所有位置,时间复杂度为 O(n·d²),因为每个位置的计算涉及到嵌入维度的矩阵运算。
3. 整体时间复杂度
单层 Transformer 的总时间复杂度:
- 自注意力机制:O(n²·d)
- 前馈网络:O(n·d²)
- 总计:O(n²·d + n·d²)
实际情况:
通常情况下,序列长度 n 大于嵌入维度 d(n > d)。因此,时间复杂度主要由 O(n²·d) 主导。
4. 多头注意力的影响
多头注意力机制:
使用 h 个注意力头,每个头的维度为 d/h。
计算复杂度:
总时间复杂度仍为 O(n²·d),与单头注意力相同,因为 h 是常数。
5. 总结
Transformer 模型的计算时间复杂度主要由自注意力机制的 O(n²·d) 决定。
前馈网络的复杂度为 O(n·d²),在 n 远大于 d 的情况下,可以忽略不计。
当处理长序列时,自注意力机制的二次时间复杂度导致计算量迅速增加。
6. 复杂度的改进方法
降低计算复杂度的模型:
-
线性注意力(Linear Attention):将复杂度降低到 O(n·d),适合处理长序列。
-
稀疏注意力机制:只计算部分位置的注意力,例如使用局部窗口。复杂度介于 O(n·d) 和 O(n²·d) 之间。
-
改进的模型架构: Performer、Linformer、Longformer 等模型,通过改进注意力机制,降低复杂度。