多维多重背包问题_多选择多维背包问题,Multiple Choice Multi-Dimensional Knapsack problem,音标,读音,翻译,英文例句,英语词典...

1. 刀具的选择

数控机床在加工模具时所采用的刀具多数与通用刀具相同。经常也使用机夹不重磨可转位硬质合金刀片的铣刀。由于模具中有许多是由曲面构成的型腔,所以经常需要采用球头刀以及环形刀(即立铣刀刀尖呈圆弧倒角状)。

2.铣削曲面时应注意的问题

(1) 粗铣  粗铣时应根据被加工曲面给出的余量,用立铣刀按等高面一层一层地铣削,这种粗铣效率高。粗铣后的曲面类似于山坡上的梯田。台阶的高度视粗铣精度而定。

(2) 半精铣  半精铣的目的是铣掉“梯田”的台阶,使被加工表面更接近于理论曲面,采用球头铣刀一般为精加工工序留出0.5㎜左右的加工余量。半精加工的行距和步距可比精加工大。

(3) 精加工  最终加工出理论曲面。用球头铣刀精加工曲面时,一般用行切法。对于开敞性比较好的零件而言,行切的折返点应选在曲表的外面,即在编程时,应把曲面向外延伸一些。对开敞性不好的零件表面,由于折返时,切削速度的变化,很容易在已加工表面上及阻挡面上,留下由停顿和振动产生的刀痕。所以在加工和编程时,一是要在折返时降低进给速度,二是在编程时,被加工曲面折返点应稍离开阻挡面。对曲面与阻挡面相贯线应单作一个清根程序另外加工,这样就会使被加工曲面与阻挡面光滑连接,而不致产生很大的刀痕。

(4) 球头铣刀在铣削曲面时,其刀尖处的切削速度很低,如果用球刀垂直于被加工面铣削比较平缓的曲面时,球刀刀尖切出的表面质量比较差,所以应适当地提高主轴转速,另外还应避免用刀尖切削。

(5) 避免垂直下刀。平底圆柱铣刀有两种,一种是端面有顶尖孔,其端刃不过中心。另一种是端面无顶尖孔,端刃相连且过中心。在铣削曲面时,有顶尖孔的端铣刀绝对不能像钻头似的向下垂直进刀,除非预先钻有工艺孔。否则会把铣刀顶断。如果用无顶尖孔的端刀时可以垂直向下进刀,但由于刀刃角度太小,轴向力很大,所以也应尽量避免。最好的办法是向斜下方进刀,进到一定深度后再用侧刃横向切削。在铣削凹槽面时,可以预钻出工艺孔以便下刀。用球头铣刀垂直进刀的效果虽然比平底的端铣刀要好,但也因轴向力过大、影响切削效果的缘故,最好不使用这种下刀方式。

(6) 铣削曲面零件中,如果发现零件材料热处理不好、有裂纹、组织不均匀等现象时,应及时停止加工,以免浪费工时。

(7) 在铣削模具型腔比较复杂的曲面时,一般需要较长的周期,因此,在每次开机铣削前应对机床、夹具、刀具进行适当的检查,以免在中途发生故障,影响加工精度,甚至造成废品。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
The 0-1 Knapsack Problem is a classic optimization problem in computer science and mathematics. The problem is as follows: Given a set of items, each with a weight and a value, determine the items to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. The 0-1 indicates that each item can only be included once or not at all. This problem can be solved using dynamic programming. We can create a two-dimensional array where the rows represent the items and the columns represent the weight limit. For each item and weight limit, we can calculate the maximum value that can be obtained by either including the item or excluding it. We can then fill in the array row by row until we reach the final row, which represents the optimal solution. Here is an example implementation of the 0-1 Knapsack Problem in Java: ``` public class Knapsack { public static int knapsack(int[] values, int[] weights, int limit) { int[][] dp = new int[values.length + 1][limit + 1]; for (int i = 1; i <= values.length; i++) { for (int j = 1; j <= limit; j++) { if (weights[i-1] > j) { dp[i][j] = dp[i-1][j]; } else { dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]); } } } return dp[values.length][limit]; } public static void main(String[] args) { int[] values = {60, 100, 120}; int[] weights = {10, 20, 30}; int limit = 50; int result = knapsack(values, weights, limit); System.out.println("Maximum value: " + result); } } ``` In this example, we have three items with values of 60, 100, and 120 and weights of 10, 20, and 30, respectively. We want to find the maximum value we can obtain with a weight limit of 50. The result is 220, which indicates that we should select items 2 and 3 to maximize the value while staying under the weight limit.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值