(1) 要求f(x)=a有两不同的零点x1和x2,则f(x)=lnx/x=a的图像必须穿过x轴两次。因为f(x)在(0,1)和(1,+∞)的单调性不同,所以我们分别考虑两个区间。
在(0,1)中,f(x)单调递增且f(1)=0,所以当a>0时,f(x)=a必有一个零点,当a<0时,f(x)=a没有零点。因此,a>0时,f(x)=a有且只有一个零点。
在(1,+∞)中,f(x)单调递减,当x趋近于无穷大时,f(x)趋近于0,所以当a>0时,f(x)=a没有零点,当a=0时,f(x)=a有一个零点,当a<0时,f(x)=a有且只有一个零点。
综上所述,a≠0时,f(x)=a有两个不同的零点x