复合函数求导定义证明,复合函数求导法则的又一证明

复合函数求导法则的又一证明

陈尔明  (齐齐哈尔师范学院数学系 161006)

复合函数的求导法则是求导运算的重要法

则Ζ 对于 y = f (u ) , u= g (x ) , 复合函数 y =

f 〔g (x )〕的求导法则的证明有一个很自然的想

法: ∃y∃x =

∃y

∃u·

∃u

∃x , lim∃x→0

∃y

∃x = lim∃u→0

∃y

∃u· lim∃x→0

∃u

∃x Ζ 但

是, 当 ∃x →0 时, ∃u 可能等于 0, 此时∃y∃u 没有意

义, 所以上面很直接的想法行不通Ζ一般的证明采

取另外的方法[ 1 ], [ 2 ]Ζ本文仍从上面直观的想法

出发, 加以改进, 得到了又一个证明Ζ

定理 若 y = f (u ) 在 u 可导, 函数 u = g (x )

在 x 可导, 则复合函数 y = f〔g (x )〕在 x 可导, 且

{f〔g (x )〕}′= f ′(u )·g′(x ).

证明  (1) 若ϖ ∆> 0, 使û ∃x û < ∆时 ∃u≠0Ζ

此时∃y∃x =

∃y

∃u·

∃u

∃x 总有意义Ζ 由于 u = g (x ) 在 x

可导, 故 u= g (x )在 x 连续, 即当 ∃x →0 时, ∃u→

0Ζ 于是 lim

∃x→0

∃y

∃x = lim∃u→0

∃y

∃u· lim∃x→0

∃u

∃x , 即

{f〔g (x )〕}′= f ′(u )·g′(x ).

(2)下面我们讨论 ∃x →0 时, 总有某些 ∃u 等

于 0 的情形Ζ 此时, 存在叙列{ti}, lim

i→∞

ti= 0,

g (x + ti) - g (x ) = 0, 其中 i∈NΖ 那么

lim

i→∞

g (x + ti) - g (x )

ti

= 0. 因 u= g (x ) 在 x 可导, 即

lim

∃x→0

∃u

∃x 存在, 那么自然有 lim∃x→0

∃u

∃x = 0Ζ 对于

f〔g (x + ∃x )〕- f〔g (x )〕

∃x 有两种情形: ∃u = 0, 或

∃u ≠ 0Ζ 当 ∃u = g ( x + ∃x ) - g ( x ) = 0 时,

f〔g (x + ∃x )〕- f〔g (x )〕

∃x =

f〔g (x )〕- f〔g (x )〕

∃x

= 0. 而当 ∃u= g (x + ∃x ) - g (x ) ≠0, 由于 f ′(u )

存在, 当 ∃x →0 时, ∃y∃u有界, 即存在常数M > 0,

∃y

∃u < M . 又由于 g′(x ) = lim∃x→0

∃u

∃x 此时已知道等

于 0, 对任意 Ε> 0, 必存在Ζ ∆> 0, 使û ∃x û< ∆时,

∃u

∃x <

Ε

M

. 那么 ∃y∃u·

∃u

∃x < M ·

Ε

M

= Ε, 这就证

明了此时 lim

∃x→0

∃y

∃x = 0Ζ综合上面两种情况, 我们得到:

{ f 〔g (x )〕}′= lim

∃x→0

∃y

∃x = 0= f ′(u ) · lim∃x→0

∃u

∃x

= f ′(u )·g′(x ).

综合 (1)、(2)我们证得了链锁规则Ζ

这个证明比较直观, 从另一个侧面揭示了复

合函数的导数与有关各量间的关系Ζ另外, 这个证

明有个“副产品”, 即当 ∃x →0 时, 如果总有某些

∃u 等于 0, 那么必有{f〔g (x )〕}′= 0.

参考文献

1 江泽坚、吴智泉、周光亚. 数学分析. 北京: 人民教育出版社, 1964.

2 刘玉琏、傅沛仁Ζ数学分析讲义Ζ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值