复合函数求导 链式法则证明

这篇博客详细介绍了链式法则在微积分中的应用,通过数学证明阐述了如何求解复合函数的导数。文章首先定义了导数,然后分别对内部函数和外部函数进行求导,最终推导出链式法则的表达式,证明了当内外两个函数都可导时,复合函数的导数可以通过乘积形式得到。
摘要由CSDN通过智能技术生成

链式法则(chain rule)是微积分中的求导法则,用于求得一个复合函数的导数,是微积分求导运算中的一种常用方法。

已知导数定义为:

f{}'\left ( x \right )=\frac{df}{dx}=\lim_{h\rightarrow 0}\frac{f\left ( x+h \right )-f\left ( x \right )}{h}

假设有函数F\left ( x \right )=f\left ( g\left ( x \right ) \right ),其中f\left ( \cdot \right )g\left ( \cdot \right )为函数,x为常数,使得f\left ( \cdot \right )g\left ( x \right )可导,且g\left ( \cdot \right )x处可导;则有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值