Python 生成LSTM模型的代码

该文展示了如何利用Python的Keras库创建一个LSTM模型,首先定义了一个Sequential模型,添加了LSTM层和Dense层,然后进行了模型编译,使用了交叉熵作为损失函数。
摘要由CSDN通过智能技术生成

以下是使用Python生成LSTM模型的代码示例:

from keras.models import Sequential
from keras.layers import LSTM, Dense

# 定义LSTM模型
model = Sequential()
model.add(LSTM(64, input_shape=(timesteps, input_dim)))
model.add(Dense(num_classes, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值