在评估模型可行性时,应该着重关注预测的准确度。决定系数可以用来衡量模型的预测能力,但是它并不能很好地衡量模型的精确度。因此,评估模型的可行性时,应该主要关注预测的准确度,并考虑决定系数作为次要指标。
预测的准确度可以通过模型在测试数据上的性能来评估。常用的指标包括精度、召回率、F1分数等。这些指标可以帮助我们了解模型对于预测的真实标签的准确度。
决定系数是一种常用的统计指标,用于衡量因变量与自变量之间的相关性。在机器学习中,决定系数可以用来衡量模型的预测能力,即模型预测的值与真实值之间的相关性。但是,决定系数并不能很好地衡量模型的精确度,因此在评估模型可行性时,应该着重关注预测的准确度。