经过前面几章的学习,我们开始真正意义上的爬虫了。
爬取目标
本次我们要爬取的网站是:百度贴吧,具体贴吧是生活大爆炸吧
。
贴吧地址 :
https://tieba.baidu.com/f?kw=%E7%94%9F%E6%B4%BB%E5%A4%A7%E7%88%86%E7%82%B8&ie=utf-8
Python版本 : 3.6.2(建议用python3最好)
浏览器版本: Chrome
目标分析
- 从网上爬下特定页码的网页
- 对于爬下的页面内容进行简单的筛选分析
- 找到每一篇帖子的 标题、发帖人、日期、楼层、以及跳转链接
- 将结果保存到文本。
前期准备
看到贴吧的url地址是不是觉得很乱?有那一大串认不得的字符?其实这些都是中文字符,
%E7%94%9F%E6%B4%BB%E5%A4%A7%E7%88%86%E7%82%B8
在编码之后就是: 生活大爆炸 。
链接的末尾处:&ie=utf-8 表示该连接采用的是utf-8编码。
由于Python3默认全局采用的就是utf-8编码,所以这里不需要再对编码进行转换。
接着我们翻到贴吧的第二页:
https://tieba.baidu.com/f?kw=%E7%94%9F%E6%B4%BB%E5%A4%A7%E7%88%86%E7%82%B8&ie=utf-8&pn=50
注意到没有,连接的末尾处多了一个参数
&pn=50
这里我们很容易就能猜到,这个参数的与页码的联系:
- &pn=0 : 首页
- &pn=50: 第二页
- &pn=100:第三页
- &pn=50*n 第n页
50 表示 每一页都有50篇帖子。
这下我们就能通过简单的url修改,达到翻页的效果了。
chrome开发工具
要写爬虫,我们一定要会使用开发工具,说起来这个工具是给前端开发人员用的,但是我们可以通过它快速定位我们要爬取的信息,并找到相对应的规律。
右键,检查,打开chrome工具。
使用模拟点击工具快速定位到一个单独帖子的位置。(左上角的鼠标箭头图标)
我们仔细的观察一下,发现每个帖子的内容都包裹在一个li标签内:
<li class=" j_thread_list clearfix">
这样我们只要快速找出所有的符合规则的标签,在进一步分析里面的内容,最后筛选出数据就可以了。
开始写代码
我们先写出抓取页面内人的函数:
这是前面介绍过的爬取框架,以后我们会经常用到。
import requests
from bs4 import BeautifulSoup
# 首先我们写好抓取网页的函数
def get_html(url):
try:
r = requests.get(url,timeout=30)
r.raise_for_status()
#这里我们知道百度贴吧的编码是utf-8,所以手动设置的。爬去其他的页面时建议使用:
# r.endcodding = r.apparent_endconding
r.encoding='utf-8'
return r.text
except:
return " ERROR "
接着我们摘取其中的详细信息:
我们来分一下每一个li
标签内部的结构:
- 一个大的
li
标签内包裹着很多个div
标签
而我们要的信息就在这一个个div
标签之内:
# 标题&帖子链接:
<a href="/p/4830198616" title="又重温一遍 第九季 这个侧脸给多少分" target="_blank" class="j_th_tit ">又重温一遍 第九季 这个侧脸给多少分</a>
#发帖人:
<span class="tb_icon_author " title="主题作者: Li欣远" data-field='{"user_id":836897637}'><i class="icon_author"></i><span class="frs-author-name-wrap"><a data-field='{"un":"Li\u6b23\u8fdc"}' class="frs-author-name j_user_card " href="/home/main/?un=Li%E6%AC%A3%E8%BF%9C&ie=utf-8&fr=frs" target="_blank">Li欣远</a></span>
#回复数量:
<div class="col2_left j_threadlist_li_left">
<span class="threadlist_rep_num center_text" title="回复">24</span>
</div>
#发帖日期:
<span class="pull-right is_show_create_time" title="创建时间">2016-10</span>
分析完之后,我们就能很容易的通过soup.find()
方法得到我们想要的结果
具体代码的实现:
'''
抓取百度贴吧---生活大爆炸吧的基本内容
爬虫线路: requests - bs4
Python版本: 3.6
OS: mac os 12.12.4
'''
import requests
import time
from bs4 import BeautifulSoup
# 首先我们写好抓取网页的函数
def get_html(url):
try:
r = requests.get(url, timeout=30)
r.raise_for_status()
# 这里我们知道百度贴吧的编码是utf-8,所以手动设置的。爬去其他的页面时建议使用:
# r.endcodding = r.apparent_endconding
r.encoding = 'utf-8'
return r.text
except:
return " ERROR "
def get_content(url):
'''
分析贴吧的网页文件,整理信息,保存在列表变量中
'''
# 初始化一个列表来保存所有的帖子信息:
comments = []
# 首先,我们把需要爬取信息的网页下载到本地
html = get_html(url)
# 我们来做一锅汤
soup = BeautifulSoup(html, 'lxml')
# 按照之前的分析,我们找到所有具有‘ j_thread_list clearfix’属性的li标签。返回一个列表类型。
liTags = soup.find_all('li', attrs={'class': ' j_thread_list clearfix'})
# 通过循环找到每个帖子里的我们需要的信息:
for li in liTags:
# 初始化一个字典来存储文章信息
comment = {}
# 这里使用一个try except 防止爬虫找不到信息从而停止运行
try:
# 开始筛选信息,并保存到字典中
comment['title'] = li.find(
'a', attrs={'class': 'j_th_tit '}).text.strip()
comment['link'] = "http://tieba.baidu.com/" + \
li.find('a', attrs={'class': 'j_th_tit '})['href']
comment['name'] = li.find(
'span', attrs={'class': 'tb_icon_author '}).text.strip()
comment['time'] = li.find(
'span', attrs={'class': 'pull-right is_show_create_time'}).text.strip()
comment['replyNum'] = li.find(
'span', attrs={'class': 'threadlist_rep_num center_text'}).text.strip()
comments.append(comment)
except:
print('出了点小问题')
return comments
def Out2File(dict):
'''
将爬取到的文件写入到本地
保存到当前目录的 TTBT.txt文件中。
'''
with open('TTBT.txt', 'a+') as f:
for comment in dict:
f.write('标题: {} \t 链接:{} \t 发帖人:{} \t 发帖时间:{} \t 回复数量: {} \n'.format(
comment['title'], comment['link'], comment['name'], comment['time'], comment['replyNum']))
print('当前页面爬取完成')
def main(base_url, deep):
url_list = []
# 将所有需要爬去的url存入列表
for i in range(0, deep):
url_list.append(base_url + '&pn=' + str(50 * i))
print('所有的网页已经下载到本地! 开始筛选信息。。。。')
#循环写入所有的数据
for url in url_list:
content = get_content(url)
Out2File(content)
print('所有的信息都已经保存完毕!')
base_url = 'http://tieba.baidu.com/f?kw=%E7%94%9F%E6%B4%BB%E5%A4%A7%E7%88%86%E7%82%B8&ie=utf-8'
# 设置需要爬取的页码数量
deep = 3
if __name__ == '__main__':
main(base_url, deep)
代码里有详细的注释和思路,看不懂的话 多看几遍
好了今天的文章到这里就结束了。