随机效应估算与固定效应估算_混合效应模型和面板数据分析zz Flona

考虑一类混合效应模型yij=ai+xiβ+eij,j=1,2,…,mi,i=1,2,…,n,其中Eai=0,Eai2=σa2,Eeij=0,Eeij2=σe2.给出了参数β,σa2和σe2的估计,并证明了这些估计量的强相合性.还讨论了随机效应ai的方差为零的检验问题,给出了检验方案.

随机效应模型 random effects

models随机效应模型(random effects models)是经典的线性模型的一种推广,就是把原来(固定)的回归系数看作是随机变量,一般都是假设是来自正态分布。如果模型里一部分系数是随机的,另外一些是固定的,一般就叫做混合模型(mixed models)。

虽然定义很简单,对线性混合模型的研究与应用也已经比较成熟了,但是如果从不同的侧面来看,可以把很多的统计思想方法综合联系起来。概括地来说,这个模型是频率派和贝叶斯模型的结合,是经典的参数统计到高维数据分析的先驱,是拟合具有一定相关结构的观测的典型工具。

随机效应最直观的用处就是把固定效应推广到随机效应。注意,这时随机效应是一个群体概念,代表了一个分布的信息

or 特征,而对固定效应而言,我们所做的推断仅限于那几个固定的(未知的)参数。例如,如果要研究一些水稻的品种是否与产量有影响,如果用于分析的品种是从一个很大的品种集合里随机选取的,那么这时用随机效应模型分析就可以推断所有品种构成的整体的一些信息。这里,就体现了经典的频率派的思想-任何样本都来源于一个无限的群体(population)。

同时,引入随机效应就可以使个体观测之间就有一定的相关性,所以就可以用来拟合非独立观测的数据。经典的就有重复观测的数据,多时间点的记录等等,很多时候就叫做纵向数据(

  • 1
    点赞
  • 2
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金山文档

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值