均值的95%置信区间以样本的平均值为中心,在两个方向上对称延伸。延伸的距离等于SEM乘以一个常数,这个常数是由样本量大小决定的。
下图显示了不同样本量所对应的常数:
常数=TINV(0.05, N-1),其中N为样本量,TINV是excel中的函数。
假设我们的样本量为500,计算其对应的常数,调用excel中的函数TINV (),如下所示,可以看到计算得到的常数与上图中呈现的一致的。
实际上,对于大样本量而言,这个常数基本等于2。
假设我们有样本数据为1, 2, 3, 4, 5, 6, 7, 8, 9, 10共记十个数据。那么95%置信区间的上区间值就等于5.5(平均值)+0.9574(SEM)*2.262(10个样本量对应的常数)=7.66;下区间等于5.5(平均值)-0.9574(SEM)*2.262(10个样本量对应的常数)=3.33。
下面我们用GraphPad软件来检验一下。
1. 输入数据。
2. 选择Column statistcis,点击OK。
3. 选择95% CI of the mean,点击OK。
4. 结果解读。可以看到,95%置信区间与我们上述计算的是一致的。