一、重要概念理解:
完全图(Complate graph)
在由n个顶点组成的无向图中,若有n*(n-1) / 2条边,则称之为无向完全图。在由n个顶点组成的有向图中,若有n*(n-1) 条边,则称之为有向完全图。
完全图中的边数达到最大。
权(weight)
在某些图中,边具有与之相关的数值,称为权重。权重可以表示从一个顶点到另一个顶点的距离,花费的代价,所需要的时间,次数等。这种带全图叫做网络(network)。
度(degree)
与顶点关联的边数,称做该顶点的度。在有向图中,顶点的度等于其入度与出度之和。
邻接顶点(adjacent vertex) 子图(subgraph) 路径(path)
二、存储图结构:
邻接矩阵:将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示个顶点之间的邻接关系。
以上图无向图为例:1、A到A没有边,所以A到A的位置为0。2、A到B/C/D都有边所以为1。以此类推......
A | B | C | D | |
A | 0 | 1 | 1 | 1 |
B | 1 | 0 | 1 | 1 |
C | 1 | 1 | 0 | 1 |
D | 1 | 1 | 1 | 0 |
三、代码: