DOI: 10. 3969 / j. issn. 1009-9492. 2020. 11. 013
蔡蒂,丁晓飞,曲德宇,等. 移动机器人运动过程的模糊自整定PID控制及实现[J] . 机电工程技术,2020,49(11):48-52.
基金项目:广州供电局有限公司科技项目(编号:GZHKJXM20170068)
移动机器人运动过程的模糊自整定PID控制及实现*
蔡蒂1,丁晓飞1,曲德宇1,张铁2
(1. 广州供电局有限公司, 广州510620;
2. 华南理工大学机械与汽车工程学院, 广州510640)
摘要:移动机器人的运动控制涉及到控制功能、算法及其在硬件和软件上的实现。移动机器人的环境一直处于变化之中,其控制主要集中在左、右驱动轮的独立控制,提高控制精度、响应速度以及运动过程的轨迹精度是控制的难点。提出将模糊自整定PID控制应用于复杂的移动机器人的运动轨迹控制,在建立模糊控制规则的基础上,根据速度偏差的不同,调整控制要求。进一步建立模糊变量的隶属度表,根据隶属函数曲线斜率的不同选择不同分辨率的模糊集。建立了模糊控制表,根据接收的控制量查表得出控制结论。通过在移动机器人平台上使用三角形路径跟踪的方式,对比纯PID控制,模糊自整定PID控制有效提高了轨迹跟踪精度。
关键词:移动机器人;PID控制;模糊自整定PID;模糊控制规则;轨迹跟踪
中图分类号:TP242 文献标志码:A
文章编号:1009-9492 ( 2020 ) 11-0048-05
引言
移动机器人运动控制系统通常包含2部分内容,其一是完成所需的控制功能和算法的定义,其二是这些功能在硬件和软件上的实现[1-2]。运动控制是影响机器人性能的一个重要指标,国内外的很多相关学者都对移动机器人的运动控制系统作了大量的研究。
人们在机器人方面采用多种多样的控制方式。有的为自主移动机器车设计了一种机器人速度控制系统,整个系统以安全为出发点,以Galil DMC-1000 为该控制系统的主控制器,其能够完成对环境信息的处理,又能够使用PID控制算法完成对驱动电机的控制[3-4];有的团队设计出一个互耦运动控制器[5],用于对移动机器人2个独立驱动电机的控制,其控制原理是对驱动电机的控制不仅依赖于环境信息和该电机的运动状态,而且还参考另一驱动电机的运动状态,该控制器能减少驱动电机的固有误差,具有较好的控制效果;又比如一种小型足球机器人TINYPHOON,该机器人控制系统以DSP芯片为控制核心,采用PID控制算法,有优越的运动控制性能[6-7];还有一种基于单片机结合专用运动控制芯片的移动机器人控制器[8],采用PID控制算法,具有模块化的优点,但硬件系统不够简洁,控制精度也有待提高;关于机器人的运动控制算法的研究,有学者提出了单神经元自适应PID控制算法和基于Kalman滤波的PID控制算法,以及参数自调模糊控制算法[9-11];有的移动机器人采用高性能的ARM7芯片,满足所需生成PWM信号的精度要求[12-13]。
机器人的运动控制通常采用PID控制,也有一些成果介绍了模糊控制。PID和模糊控制各有优缺点,如果使用PID控制,饱和性局限了其使用,另外控制的实时性也不能得到保障[14]。采用模糊控制,控制精度不够高,不能满足控制的要求。机器人在运动过程中,各种情况都处在变化之中,比如速度的目标值以及机器人所处的环境都在变化过程之中。除此之外,机器人的转动惯量和重心也在不断变化之中,并且其底盘驱动轮的驱动情况也存在差异[15]。
本文结合所研制的轮式移动机器人,提出了一种基于模糊自整定PID控制的机器人运动轨迹控制方法,并基于通用计算机控制的机器人控制系统进行了实验验证。
结束语
以移动机器人运动控制为研究对象,采用了PID控制和模糊控制二者相结合的方法,提出了一种PID参数模糊自整定控制。一方面建立了相应的模糊控制规则,根据速度偏差调整控制要求,另一方面建立了隶属度表和模糊控制表,根据实际的控制变量选择合适的参数。
最后在移动机器人平台上对比了PID控制和PID参数模糊自整定控制的轨迹跟踪实验,通过终点定位和路径误差的对比,模糊自整定PID控制有效提高了跟踪精度,验证了模糊自整定PID控制的可行性和准确性。
商务合作:020-38731337