第二节快速入门举了一个例子,可以更加清晰地看到数据是如何被处理、模型是如何被训练的。

1. 环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
  • 1.
  • 2.
  • 3.
  • 4.
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
  • 1.
  • 2.
  • 3.
  • 4.

2. 处理数据集

在这里使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

本章节中的示例代码依赖download,可使用命令pip install download安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

25天学习打卡营第2天|快速入门_学习


数据下载完成后,获得数据集对象。

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
  • 1.
  • 2.

打印数据集中包含的数据列名,用于dataset的预处理。

print(train_dataset.get_col_names())
  • 1.

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • vision.Rescale第一个参数代表rescale(缩放因子),第二个参数代表shift(平移因子)。基于给定的缩放和平移因子调整图像的像素大小。输出图像的像素大小为:output = image * rescale + shift。
  • vision.Normalize根据均值和标准差对输入图像进行归一化。output[channel] = (input[channel] - mean[channel]) / std[channel],其中 channel 代表通道索引,channel >= 1。
  • 第一个参数mean (sequence) - 图像每个通道的均值组成的列表或元组。平均值必须在 [0.0, 255.0] 范围内。
  • 第二个参数std (sequence) - 图像每个通道的标准差组成的列表或元组。标准差值必须在 (0.0, 255.0] 范围内。
  • vision.HWC2CHW的作用: shape (H, W, C) to shape (C, H, W).
  • transforms.TypeCast将输入的Tensor转换为指定的数据类型。
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
  • 1.
  • 2.
  • 3.

可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatyp

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
  • 1.
  • 2.
  • 3.
  • 4.

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
  • 1.
  • 2.
  • 3.
  • 4.

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

3. 网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.

Network<
(flatten): Flatten<>
(dense_relu_sequential): SequentialCell<
(0): Dense<input_channels=784, output_channels=512, has_bias=True>
(1): ReLU<>
(2): Dense<input_channels=512, output_channels=512, has_bias=True>
(3): ReLU<>
(4): Dense<input_channels=512, output_channels=10, has_bias=True>

4. 模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
参数优化:将梯度更新到参数上。
MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

定义正向计算函数。
使用value_and_grad通过函数变换获得梯度计算函数。
定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.

除训练外,我们定义测试函数,用来评估模型的性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
Epoch 1
-------------------------------
loss: 2.295473  [  0/938]
loss: 1.600120  [100/938]
loss: 0.902164  [200/938]
loss: 0.657262  [300/938]
loss: 0.499169  [400/938]
loss: 0.409533  [500/938]
loss: 0.278956  [600/938]
loss: 0.392369  [700/938]
loss: 0.254981  [800/938]
loss: 0.179139  [900/938]
Test: 
 Accuracy: 90.9%, Avg loss: 0.318304 

Epoch 2
-------------------------------
loss: 0.437096  [  0/938]
loss: 0.234818  [100/938]
loss: 0.343764  [200/938]
loss: 0.187788  [300/938]
loss: 0.135103  [400/938]
loss: 0.519490  [500/938]
loss: 0.350144  [600/938]
loss: 0.396739  [700/938]
loss: 0.139167  [800/938]
loss: 0.343117  [900/938]
Test: 
 Accuracy: 92.9%, Avg loss: 0.251114 

Epoch 3
-------------------------------
loss: 0.194336  [  0/938]
loss: 0.283090  [100/938]
loss: 0.159385  [200/938]
loss: 0.151038  [300/938]
loss: 0.274085  [400/938]
loss: 0.195324  [500/938]
loss: 0.217037  [600/938]
loss: 0.119866  [700/938]
loss: 0.143004  [800/938]
loss: 0.243882  [900/938]
Test: 
 Accuracy: 93.7%, Avg loss: 0.208077 

Done!
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.

5. 保存模型

模型训练完成后,需要将其参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
  • 1.
  • 2.
  • 3.

6. 加载模型

加载保存的权重分为两步:

  1. 重新实例化模型对象,构造模型。
  2. 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

加载后的模型可以直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
Predicted: "[4 8 2 3 1 9 7 8 1 1]", Actual: "[4 8 2 3 1 9 7 8 1 1]"
  • 1.

25天学习打卡营第2天|快速入门_数据_02