python共享单车数据分析_利用python分析共享单车项目

目录

文章分为以下五大部分项目介绍

数据准备

数据处理

数据分析

总结

一、项目介绍

针对共享租赁时代中比较火的共享单车项目,现分析kaggle提供的国外The Pronto Cycle Share的共享单车数据集。Pronto Cycle Share是一个非牟利组织,在2014年成立,该组织总部西雅图。

提出问题:

1.Pronto共享单车一天中哪个时间段使用人数最多?工作日和非工作日使用情况?一年中每个月份使用情况?

2.会员与非会员对共享单车需求量情况?使用共享单车的是男性多,还是女性多?使用共享单车的最多的是青年群体吗?

3. 天气因素,如温度、湿度、能见度,等,对共享单车使用情况有什么影响?

二、数据准备

1.数据集来源:https://www.kaggle.com/pronto/cycle-share-dataset​www.kaggle.com

该资源有三个数据集,包括stations, trip, and weather,时间跨度2014-2016。

2.字段描述

trip:

trip_id 订单编号

starttime 骑行开始时间

stoptime 骑行结束时间

bikeid 单车编号

from_station_id 出发站编号

to_station_id 到达站编号

usertype 用户类型

gender 性别

birthyear 出生年份

weather:

Date 日期

Temperature 温度

Dew_Point 露点

humidity 湿度

Sea_Pressure 海平面气压

Visibility_Miles 能见度

Wind_Speed 风速

Precipitation_In 降水量

三、数据处理

1.数据导入

#导入数据分析需要的包

import pandas as pd

import numpy as np

import datetime

#可视化包

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签

plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

%matplotlib inline

#忽略警告信息

import warnings

warnings.filterwarnings('ignore')

#导入数据集

trip = pd.read_csv('C:/Users/dwhyx/Downloads/cycle-share-dataset/trip.csv',encoding = 'utf-8', sep = ',')

weather = pd.read_csv('C:/Users/dwhyx/Downloads/cycle-share-dataset/weather.csv',encoding = 'utf-8', sep = ',')

#查看数据基本情况

trip.info()

we

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值