数学四大思想八大方法_初中数学思想方法入门之反证法!

0c63c0b1dd70569156d8e0c4f5eb84a6.gif

初中阶段我们已经接触了反证法,但只要求我们了解,应用不多,反证法是数学家最锐利的武器,今后有许多数学命题都得靠反证法进行证明。

反证法其实并不难理解,我们在日常生活中也在不知不觉中运用.“要是晚没下雨,早晨地面会那么湿吗?”这就是用反证法判断昨晚曾经下了雨。

让我们用一个最简单的例子来揭示反证法的结构。

命题:两条直线相交,只有一个交点。

同学们肯定会说,这么明显的结论还用证明么?其实,追本溯源,这个命题不属于欧几里得的公理系统,是要证明的证明如下:

假设两条直线相交,有两个交点(作出假设,否定结论),

那么经过这两个交点存在两条直线,这与“经过两点有且只有一条直线”的公理矛盾(正确推理,导致矛盾),

所以两条直线相交,只有一个交点(否定假设,肯定结论)。

括号内的三句话,点明了反证法的三个步骤

反证法的假设与要证明的命题是完全对立的两个命题,只有一个正确,由假设导致矛盾,说明假设是错的,必须否定,那么结论一定正确概括地说,两个相互对立的命题,不能同假,必有一真.

但是有一个前提:推理必须正确无误,要是推理过程出了问题,那么矛盾可能由推理引起,假设也许没错。

从反证法的假设出发进行推理,直到导致矛盾,必须点明与什么相矛盾,不能含糊.

一般地说,矛盾有以下几种:与假设矛盾(比如假设a>b,推理结果是a≤b);

与题设矛盾(比如已知a是有理数,推理结果a是无理数);

与已知的概念矛盾(比如得到平行线相交的结论);

与已知的公理、定理矛盾(比如导致三角形内角和大于180°);

推理过程中发生自相矛盾等。

90342ff57fe3cb0c933d4c48ae1e1efe.png

例1:在△ABC中,记∠A,∠B,∠C的对边分别为a,b,c,求证:如果98cf307a4deabcf09e9111442034d2a6.png,那么∠A是锐角.

注意:结论“∠A是锐角”的反面是“∠A是直角或钝角”。

证明:假设∠A是直角或钝角,那么∠A是△ABC的最大内角,所以a>b,a>c.由于a,b,c都是正数,所以600e7b20d45128e99b137755a11bb1f1.png.这与题设发生矛盾。

所以∠A是锐角。

说明:反证法是一种间接证法本题条件实在太少,从题设出发很难推理,因此想到从结论的反面出发进行推理.

反证法的假设“∠A是直角或钝角”成为一个新的推理依据,使推理得以顺畅进行,结果与题设发生矛盾。

可见:反证法适合于证明条件较少的命题

例2:求证:三角形一个内角的三等分线不可能三等分它的对边。

文字表述的命题要画出图形,写出已知、求证,这与直接证法相同。

已知:如图1,AD,AE三等分∠BAC,且与BC相交于点D,E.

65e67b8353941c149d4b0967d6acaec7.png

图1

求证:线段BD,DE,EC不全相等(注意:不是两两不等).

证明:假设BD=DE=EC.

AD,AE中至少有一条与BC不垂直,不妨认为AD与BC不垂直,作EF⊥AD,与AB(或其延长线)交于点F,垂足是G.

因为AD平分∠BAE,EF⊥AD,所以G是EF的中点,而D是EB的中点,所以GD∥FB,即AB∥AD这与AB,AD相交于点A矛盾.

所以BD,DE,EC不全相等。

反思:“不全相等”的反面是“全相等”,因此本例中的假设是对命题结论的否定,三角形内角的三等分线可能与对边垂直,但与对边垂直的不能有两条,这个判断使我们找到了制造矛盾的对象,简化了推理本例推理结果与平行线的定义矛盾,很清晰。

注意:反证法常用来证明否定型的命题。

例3:设A,B,C,D是平面内四点,任何三点都不在一条直线上,因此以这些点为顶点共可画出四个三角形,求证:在这四个三角形中,总存在个三角形,它的内角至少有一个不大于45°.

思考:“总存在”的否定是“不存在”,“至少有一个内角不大于45°”的否定是“每个内角都大于45°”,因此,反证法的假设要仔细推敲.

另一方面,平面上四点的位置要画一画,若有多种可能,不能只研究其中一种.

69e28e160eff38b817852fe18b4adef6.png

图2

证明:假设这样的三角形不存在,即每一个三角形的所有内角都大于45°.

考虑到平面上四点只有图2所示的两种位置在(a)的12个内角中,只要考察从∠1至∠8的8个内角,因为全部都大于45°,四边形ABCD的内角和大于45°×8=360°,与四边形内角和等于360矛盾;

在(b)的12个内角中,只考察从∠1至∠6的6个内角,因为全部都大于45°,所以△ABC的内角和大于45°×6=270°,与三角形内角和等于180°矛盾。

所以在四个三角形中,总存在一个三角形,它的内角至少有一个不大于45°.

反思:制造矛盾要选准突破口,所形成的四个三角形有12个内角,如果从图2(a)选四边形ABCD的4个内角,或从图2(b)选顶点为D的3个内角,就不显现矛盾.

例4:如果一元二次方程ax2+bx+c=0有实数根,求证:当a,b,c是奇数时,这个方程的实根是无理数.

证明:假设这个方程有有理数根4(p,q是互素的整数),那么a(b6769ad4206c7085bc9d0a1c1fe986cd.png)2+b·b6769ad4206c7085bc9d0a1c1fe986cd.png+c=0.

两边同乘以p2,得aq2+bpq+cp2=0.

因为p,q互素,所以pg不可能同为偶数我们分p,q.一奇一偶和p,q都是奇数两种情况分类讨论,注意ab,c都是奇数.

若p是偶数,则q必为奇数,由于a,b,c都是奇数,所以aq2是奇数,bpq+cp2是偶数,奇偶两数之和不等于零,与①矛盾;

若p,q都是奇数,则①式左边3项都是奇数,三个奇数之和不等于零也与①矛盾;

由于①关于p,q对称,不必对q分类讨论.综上所述,当a,b,c是奇数时,这个方程的实根是无理数.

说明:根据假设进行推理,等式aq2+bpq+cp2=0与不等式aq2+bpq+cp2≠0都是推理的结果,这就是“自相矛盾”,从而否定了假设.

例5:在△ABC中,∠A的外角平分线与BC的延长线相交,则AB>AC.

思考:否定AB>AC,有AB=AC和AB<AC两种情况,要分别否定.

证明:假设AB≤AC.

若AB=AC,如图3(a),则∠B=∠C,∠CAD=∠B+∠C=2∠C.由AE是∠CAD的平分线,得∠CAD=2∠1,所以∠1=∠C,AE∥BC,这与AE与BC的延长线相交矛盾.

c0bc7b0466d2e43f568f241dfdc54d8e.png

图3

若AB<AC,如图3(b),则∠B>∠C,∠CAD=∠B+∠C>2∠C.作AF∥BC.则∠CAF=∠C,∠CAE=daed75e94a203c78deab62ca9cb894ef.png∠CAD=daed75e94a203c78deab62ca9cb894ef.png(∠B+∠C)>daed75e94a203c78deab62ca9cb894ef.png×2∠C=∠C=∠CAF,所以射线AE在∠CAF外部,且在AF的上方,与BC的延长线不相交,这与AE与BC的延长线相交矛盾.

综上所述,AB>AC成立.

反思:当结论的否定包含多种情况时,要分类一一否定,不能遗漏。

例6:已知:在四边形ABCD中,E,F分别是AD,BC的中点,且EF=daed75e94a203c78deab62ca9cb894ef.png(AB+CD),求证:AB∥CD。

证明:假设AB与CD不平行,取对角线AC的中点M,连接EM,FM,则三点E,F,M不在一条直线上,如图4,ME∥CD,MF∥AB,且MF=daed75e94a203c78deab62ca9cb894ef.pngAB,ME=daed75e94a203c78deab62ca9cb894ef.pngCD,两式相加,得由EF=daed75e94a203c78deab62ca9cb894ef.png(AB+CD),所以ME+MF=EF,与三角形两边之和大于第三边矛盾。

所以AB∥CD.

例7:已知当x等于1,2,3时,y=x2+px+q的值分别为y1,y2,y3,求证:y1,y2,y3的绝对值至少有一个不小于daed75e94a203c78deab62ca9cb894ef.png.

证明:假设y1,y2,y3的绝对值都小于daed75e94a203c78deab62ca9cb894ef.png,则y1=1+p+q,y2=4+2p+g,y3=9+3p+q

观察发现,y1+y3-2y2=2,但|y1+y3-2y2|≤|y1|+|y3|+|2y2|<4×daed75e94a203c78deab62ca9cb894ef.png=2.

所以|y1+y3-2y2|<y1+y3-2y2,这与绝对值的意义矛盾.

所以y1,y2,y3,的绝对值至少有一个不小于daed75e94a203c78deab62ca9cb894ef.png.

反思:观察y1+y3-2y2=2对证明显得非常重要,这提示我们,在解题过程中出现困难,一筹莫展时,要仔细观察条件和自己在前面推理中获得的结果,寻找突破口,切忌轻易放弃.


资料来源:《初中数学思想方法导引》,孙厚康,浙江大学出版社。

0357972a994c7b554635c8cc58dedd78.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值