中echarts显示大小问题_细说卫星变轨问题中速度大小的比较

本文详细探讨了卫星变轨过程中速度大小的比较,通过开普勒定律、外有引力公式和向心力供需关系,分析了近地点、远地点以及不同轨道的速度关系。点火加速瞬间增加的动能最终转化为引力势能,导致卫星能量逐级增加。此外,文章提及物理学中的“世界观”改造,强调用物理知识理解世界的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

细说卫星变轨问题中速度大小的比较

有些问题看起来很简单,仔细想想却又发现点问题,这其中还存在“世界观”的问题,我常常对学生说:

要用物理知识改造我们对世界的认识,而不是用我们对世界的看法去理解物理。

有时候“世界观”需要改造。

今天我们讲一讲卫星变轨问题中速度大小的比较。先说一说卫星变轨的问题,如下:

6a3a1c61cac01186846f24eedb421b20.png

首先,将卫星发射至近地圆轨道1,卫星围绕地球作匀速圆周运动。

然后,当卫星经过A点处时,点火加速,使卫星进入椭圆轨道2运行。

最后,当卫星在椭圆轨道2的B处时,再次点火加速,将卫星送入轨道3,作匀速圆周运动。

我们需要比较以下几个速度的大小?

1.在近地圆轨道1作匀速圆周运动的速度

2.在椭圆轨道2上时近地点速度

3.在椭圆轨道2上时远地点速度

4.在圆轨道3作匀速圆周运动的速度

下面,我将逐一比较这几个速度之间的关系,并顺带回顾一下外有引力相关公式,并介绍一些记忆技巧。

1.开普勒第二定律,简称开二定律:对任意卫星来说,它与地球的连线在相等时间内扫过相等的面积。

根据开二定律,我们得到椭圆轨道上近地点的速率大于远地点的速率,即:

2.“越高越慢”定理

根据外有引力提供向心力公式可知:

解得:

即对同一中心天体的环绕星体来说,半径越大,环绕速度和角速度越小,周期越大,因此可以简称为“越高越慢”定理。因此,我们可以得到,近地圆轨道1匀速圆周运动的速率大于轨道3匀速圆周运动的速率,即

3.向心力的供需关系。

当合外力刚好提供物体所需的向心加速度时,物体作匀速圆周运动;当合外力不足以提供所需的向心加速度时,物体作离心运动;当合外力大于物体所需的向心力时,物体作向心运动,简称为向心力的供需关系。如下图所示:轨迹1为合外力为0时的运动轨迹;轨迹2合外力小于所需向心力的运动轨迹;轨迹3为合外力大于所需向心力的运动轨迹。

57788bef0a203da4f153f3c49998922e.png

因此,根据向心力的供需关系,我们可以得到:轨道2相比于轨道1,在A处发生离心运动,因而:

当然这也是显然的,因为在A处点火加速才进入轨道2;

轨道3相比于轨道2,在B处发生离心运动,因而:

当然这也是显然的,因为同样在B处点火加速才进入轨道3。

所以联立(1)(2)(3)(4)对比得到:

好了,本来解决好了,但问题来了:

卫星两次先后在A处和B处点火加速后才进入轨道3,反而

其实很简单:因为点火加速只在一瞬间增加了速度大小,而之后卫星动能逐渐转化为引力势能,这就像你在一瞬间给石头一个向上的速度,但是石头向上运动越来越慢,因为动能转化为了重力势能。

需要改造下“世界观”:点火加速在一瞬间增加了动能,长久来看是增加了卫星的总能量,这里指机械能。

因此,如果我们仅从总能量(机械能即动能和引力势能)的角度来看,由于点火加速增加了卫星的能量,因而能量逐级增加,即:

稍作解释:卫星在围绕地球作匀速圆周运动的总能量(机械能)大小为:

即:半径越大,能量越大,在无穷远处,动能和引力势能均为0。

另外,如果你知道玻尔的“原子轨道”模型或者有些印象的话,应该记得,电子在离核越远的轨道上时能量越高!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值