细说卫星变轨问题中速度大小的比较
有些问题看起来很简单,仔细想想却又发现点问题,这其中还存在“世界观”的问题,我常常对学生说:
要用物理知识改造我们对世界的认识,而不是用我们对世界的看法去理解物理。
有时候“世界观”需要改造。
今天我们讲一讲卫星变轨问题中速度大小的比较。先说一说卫星变轨的问题,如下:

首先,将卫星发射至近地圆轨道1,卫星围绕地球作匀速圆周运动。
然后,当卫星经过A点处时,点火加速,使卫星进入椭圆轨道2运行。
最后,当卫星在椭圆轨道2的B处时,再次点火加速,将卫星送入轨道3,作匀速圆周运动。
我们需要比较以下几个速度的大小?
1.在近地圆轨道1作匀速圆周运动的速度
2.在椭圆轨道2上时近地点速度
3.在椭圆轨道2上时远地点速度
4.在圆轨道3作匀速圆周运动的速度
下面,我将逐一比较这几个速度之间的关系,并顺带回顾一下外有引力相关公式,并介绍一些记忆技巧。
1.开普勒第二定律,简称开二定律:对任意卫星来说,它与地球的连线在相等时间内扫过相等的面积。
根据开二定律,我们得到椭圆轨道上近地点的速率大于远地点的速率,即:
2.“越高越慢”定理
根据外有引力提供向心力公式可知:
解得:
即对同一中心天体的环绕星体来说,半径越大,环绕速度和角速度越小,周期越大,因此可以简称为“越高越慢”定理。因此,我们可以得到,近地圆轨道1匀速圆周运动的速率大于轨道3匀速圆周运动的速率,即
3.向心力的供需关系。
当合外力刚好提供物体所需的向心加速度时,物体作匀速圆周运动;当合外力不足以提供所需的向心加速度时,物体作离心运动;当合外力大于物体所需的向心力时,物体作向心运动,简称为向心力的供需关系。如下图所示:轨迹1为合外力为0时的运动轨迹;轨迹2合外力小于所需向心力的运动轨迹;轨迹3为合外力大于所需向心力的运动轨迹。

因此,根据向心力的供需关系,我们可以得到:轨道2相比于轨道1,在A处发生离心运动,因而:
当然这也是显然的,因为在A处点火加速才进入轨道2;
轨道3相比于轨道2,在B处发生离心运动,因而:
当然这也是显然的,因为同样在B处点火加速才进入轨道3。
所以联立(1)(2)(3)(4)对比得到:
好了,本来解决好了,但问题来了:
卫星两次先后在A处和B处点火加速后才进入轨道3,反而
其实很简单:因为点火加速只在一瞬间增加了速度大小,而之后卫星动能逐渐转化为引力势能,这就像你在一瞬间给石头一个向上的速度,但是石头向上运动越来越慢,因为动能转化为了重力势能。
需要改造下“世界观”:点火加速在一瞬间增加了动能,长久来看是增加了卫星的总能量,这里指机械能。
因此,如果我们仅从总能量(机械能即动能和引力势能)的角度来看,由于点火加速增加了卫星的能量,因而能量逐级增加,即:
稍作解释:卫星在围绕地球作匀速圆周运动的总能量(机械能)大小为:
即:半径越大,能量越大,在无穷远处,动能和引力势能均为0。
另外,如果你知道玻尔的“原子轨道”模型或者有些印象的话,应该记得,电子在离核越远的轨道上时能量越高!