向量场的散度和旋度_梯度,散度,旋度的基石:带你走进向量场

710ad8bb5e8292a09bad6c198836a50f.png

梯度,散度,旋度的基石:带你走进向量场
电子通信和数学
发布时间:02-1110:49教育达人,优质创作者

图一是最简单的向量,初高中的知识,往深的地方想,就是给坐标赋予了一个方向

cced9524fdd3bd2eafab7999c2123611.png


如下就是比较高级的了,有很多向量,数学上叫他向量场,首先输入一个坐标值,将坐标值带入到函数式子中,而向量又是这个函数值来决定,所以形成了如下无数多的向量,

31bae8f7232b53c0df643b880430cdfa.png


有二维的向量场,那就存在三维的,知识再二维的基础上增加了一个坐标轴

77b275c2ebb172a9385053753699a18e.png


我们来详细解说下向量场:P,Q都是标量函数,将取决于X,Y值,而这些标量的函数决定了每个坐标点的向量,理解了把

bdd8aa8334e5292c62bb96ff3fdb038f.png


在三个维度上,三维的矢量场看起来是这样的,它的向量取决于三个标量函数

794c27174ccd4c2df2b8ea4ac58a13a2.png


我们来看一个例子:输入X,Y值,得到有X,Y决定的向量值,注意向量的起点必须是坐标点,它赋予了该点坐标一个方向

89e94df73823e162bec89901740191c0.png


带入坐标(0,1)时,得到的时-i方向

fd2b5ed42301fede4db21bdfd1ab647e.png


同理如下

a01acc4b42605e39bca9e60b7896d744.png

092970e8a2322a6b71ddbbdf64625709.png


最终得到整个向量场

88aa954a3c7011abed83954586ee55d4.png


向量场的出现使我们更加容易,理解梯度,散度,旋度,它是这三个度的基石。

5b92d3f436cf0e617b54c2db13ce08af.png


散度和旋度的出现,使得物理学大大推进,格林公式,斯托克斯公式,高斯定理,都离不开向量场下的旋度和散度。所以非常重要

52fc97d37a9b73c7aec5f6268b1728fe.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页