向量场_方向向量和梯度

1.计算梯度

对于函数

f ( x , y ) = x 2 s i n ( y ) f(x,y)=x^2sin(y) f(x,y)=x2sin(y)

如何计算这个函数的梯度

我们先计算函数的偏导

得到 ∂ f / ∂ x \partial f/\partial x f/x ∂ f / ∂ y \partial f/\partial y f/y

在这里插入图片描述
梯度就是将这两个偏导打包成一个向量

∇ f \nabla f f表示(nabla)

在这里插入图片描述
在这里插入图片描述
所以,梯度捕捉了函数的所有偏导,那是不是函数的全导?

在这里插入图片描述

有多少个维度的输出,向量里面就有多少个偏微分的算子
在这里插入图片描述
2.梯度的几何意义

对于函数 f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2

函数的输入是二维

输出的梯度是一个一维的向量
在这里插入图片描述
求出函数的梯度
在这里插入图片描述
求出的梯度向量(对于每一个点(x,y),输出的梯度向量是这个向量的两倍)
在这里插入图片描述
在函数的任何一点上,沿着梯度的方向,函数增长的最快

3.方向导数

理解了偏导就是函数输入空间上一个分量方向的变化,比如x轴上的变化,对函数输出的影响有多大

在这里插入图片描述
y方向的微调,对函数输出产生的影响
在这里插入图片描述
方向导数是说

有一个向量 ,假如我给定一个方向,比如 [ − 1 2 ] \begin{bmatrix} -1 \\ 2 \\ \end{bmatrix} [12]

在这里插入图片描述

[ − 1 2 ] \begin{bmatrix} -1 \\ 2 \\ \end{bmatrix} [12] 这个方向的微调,对函数的影响有多大

在这里插入图片描述

当然这个微调是极限值,这就是方向导数的定义

在这里插入图片描述

定义 [ − 1 2 ] \begin{bmatrix} -1 \\ 2 \\ \end{bmatrix} [12]= v ⃗ \vec{v} v

往这个方向移动微小量,比如移动了h=0.001
在这里插入图片描述
方向导数函数

在这里插入图片描述

在这里插入图片描述
公理化的表示就是

有一个向量W,它的分量是[a,b],

向量w的任何一个方向f的方向导数表示为

∇ v ⃗ f = ∂ f ∂ x + ∂ f ∂ y \nabla_{\vec{v}}f=\frac{\partial f}{\partial x} \quad+\frac{\partial f}{\partial y} \quad v f=xf+yf

在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/20210720155513365.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_
这其实也是向量的点积

在这里插入图片描述

向量 [ a b ] \begin{bmatrix} a \\ b \\ \end{bmatrix} [ab]

与向量f的梯度 [ ∂ f ∂ x ∂ f ∂ y ] \begin{bmatrix} \frac{\partial f}{\partial x} \quad \\ \frac{\partial f}{\partial y} \quad \\ \end{bmatrix} [xfyf]

的点积
在这里插入图片描述

在这里插入图片描述

4.梯度,方向导数与斜率

函数 f ( x , y ) = x 2 y f(x,y)=x^2y f(x,y)=x2y

我们取输入空间内的向量 v ⃗ = \vec{v}= v = [ 1 1 ] \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} [11]

在这里插入图片描述

我们来讨论函数f在v方向的方向向量

在这里插入图片描述

沿着向量v的方向切割函数图像

在这里插入图片描述

这样向量v就落在了这个切割平面上
在这里插入图片描述
取[-1,-1]评估方向向量

在这里插入图片描述
类似的,我们取切割交线上的一点求与这一点的斜率是一样

在这里插入图片描述
为了方便后面考虑,把向量v定义成单位长度的向量,让向量v的长度等于1

在这里插入图片描述
2 \sqrt{2} 2 /2

=1.414/2

=0.7

sin45=0.7= 2 \sqrt{2} 2 /2/1

在这里插入图片描述
这个点的切线就等于函数的斜率,也是向量v方向导数

在这里插入图片描述
∂ f / ∂ v ⃗ \partial f/\partial\vec{v} f/v 就表示在v方向的微调,引起函数的变化

在这里插入图片描述
当我们计算方向导数时候

计算的是f的 梯度向量方向向量点积
在这里插入图片描述
f的梯度向量等于:
在这里插入图片描述
我们求的是点[-1,-1]的梯度,带入得到:
在这里插入图片描述
计算得到 2 + 2 / 2 \sqrt{2}+\sqrt{2}/2 2 +2 /2

(点积计算: 2 ∗ 2 / 2 + 1 ∗ 2 / 2 2*\sqrt{2}/2+1*\sqrt{2}/2 22 /2+12 /2)
在这里插入图片描述

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据斯托克斯定理,对于一个向量场$\vec{F}$,其旋度$\nabla \times \vec{F}$的面积分等于该向量场在该曲面边界上的环量积分。因此,如果我们证明了该向量场在任何封闭曲面上的环量积分都等于零,那么就可以证明该向量场的旋度恒等于零。 假设$\vec{F}$是一个向量场,$S$是一个任意的封闭曲面,$C$是该曲面的边界曲线。根据斯托克斯定理,有: $$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$$ 由于$S$是一个封闭曲面,因此可以将其分成若干个小曲面,每个小曲面都有一个相应的边界曲线。对于每个小曲面,我们可以将其上的向量场$\vec{F}$分成两个部分:一个与该小曲面平行,一个与该小曲面垂直。由于与该小曲面平行的部分在环量积分中不会产生贡献,因此我们只需要考虑与该小曲面垂直的部分。 对于每个小曲面,我们可以将其上的向量场$\vec{F}$表示为$\vec{F} = \nabla \phi$的形式,其中$\phi$是一个标量场。这是因为,对于任何向量场$\vec{F}$,都可以找到一个标量场$\phi$,使得$\vec{F} = \nabla \phi$。因此,我们可以将上式中的$\vec{F}$替换为$\nabla \phi$,得到: $$\oint_C \nabla \phi \cdot d\vec{r} = \iint_S (\nabla \times \nabla \phi) \cdot d\vec{S}$$ 由于旋度算子$\nabla \times \nabla \phi$等于零,因此上式右侧为零。因此,我们得到: $$\oint_C \nabla \phi \cdot d\vec{r} = 0$$ 由于$C$是任意的曲线,因此上式对于任何封闭曲面$S$都成立。因此,我们证明了任何向量场梯度的旋度恒等于零。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值