原文链接:
http://tecdat.cn/?p=18860tecdat.cn
简介
时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值。时序分析有两种方法,即频域和时域。前者主要基于傅立叶变换,而后者则研究序列的自相关,并且使用Box-Jenkins和ARCH / GARCH方法进行序列的预测。
本文将提供使用时域方法对R环境中的金融时间序列进行分析和建模的过程。第一部分涵盖了平稳的时间序列。第二部分为ARIMA和ARCH / GARCH建模提供了指南。接下来,它将研究组合模型及其在建模和预测时间序列方面的性能和有效性。最后,将对时间序列分析方法进行总结。
时间序列数据集的平稳性和差异:
1.平稳性:
对时间序列数据建模的第一步是将非平稳时间序列转换为平稳时间序列。这是很重要的,因为许多统计和计量经济学方法都基于此假设,并且只能应用于平稳时间序列。非平稳时间序列是不稳定且不可预测的,而平稳过程是均值回复的,即它围绕具有恒定方差的恒定均值波动。此外,随机变量的平稳性和独立性密切相关,因为许多适用于独立随机变量的理论也适用于需要独立性的平稳时间序列。这些方法大多数都假设随机变量是独立的(或不相关的)。噪声是独立的(或不相关的);变量和噪声彼此独立(或不相关)。那么什么是平稳时间序列?
粗略地说,平稳时间序列没有长期趋势,均值和方差不变。更具体地说,平稳性有两种定义:弱平稳性和严格平稳性。
a.平稳性弱:如果满足以下条件,则称时间序列{Xt,t∈Z}(其中Z是整数集)是平稳的
b.严格平稳:如果(Xt1,Xt2,...,Xtk)的联合分布与(Xt1 + h,Xt2 + h)的联合分布相同,则时间序列{Xt. ……Xtk + h),t∈Z}被认为是严格平稳的。
通常在统计文献中,平稳性是指平稳时间序列满足三个条件的弱平稳性:恒定均值,恒定方差和自协方差函数仅取决于(ts)(不取决于t或s)。另一方面,严格平稳性意味着时间序列的概率分布不会随时间变化。
例如,白噪声是平稳的,意味着随机变量是不相关的,不一定是独立的。但是,严格的白噪声表示变量之间的独立性。另外,由于高斯分布的特征是前两个时刻,所以高斯白噪声是严格平稳的,因此,不相关也意味着随机变量的独立性。
在严格的白噪声中,噪声项{et}不能线性或非线性地预测。在一般的白噪声中,可能无法线性预测,但可由稍后讨论的ARCH / GARCH模型非线性预测。有三点需要注意:
•严格的平稳性并不意味着平稳性弱,因为它不需要有限的方差
•平稳性并不意味着严格的平稳性,因为严格的平稳性要求概率分布不会随时间变化
•严格平稳序列的非线性函数也严格平稳,不适用于弱平稳
2.区别:
为了将非平稳序列转换为平稳序列,可以使用差分方法,从原始序列中减去该序列滞后1期:例如:
在金融时间序列中,通常会对序列进行转换,然后执行差分。这是因为金融时间序列通常会经历指数增长,因此对数转换可以使时间序列平滑(线性化),而差分将有助于稳定时间序列的方差。以下是苹果股票价格的示例:
•左上方的图表是苹果股票价格从2007年1月1日到2012年7月24日的原始时间序列,显示出指数级增长。
•左下方的图表显示了苹果股票价格的差分。可以看出,该系列是价格相关的。换句话说,序列的方差随着原始序列的级别增加而增加,因此不是平稳的
•右上角显示Apple的log价格图。与原始序列相比,该序列更线性。
•右下方显示了苹果log价格的差分。该系列似乎更具有均值回复性,并且方差是恒定的,并且不会随着原始系列级别的变化而显着变化。
要执行R中的差分,请执行以下步骤:
•读取R中的数据文件并将其存储在变量中
appl.close=appl$Adjclose #在原始文件中读取并存储收盘价
•绘制原始股票价格
plot(ap.close,type='l')
•与原始序列不同
diff.appl=diff(ap.close)
•原始序列的差分序列图
plot(diff.appl,type='l')
•获取原始序列的对数并绘制对数价格
log.appl=log(appl.close)
•不同的log价格和图
difflog.appl=diff(log.appl)
log价格的差分代表收益,与股票价格的百分比变化相似。
ARIMA模型:
模型识别:
通过观察时间序列的自相关建立并实现时域方法。因此,自相关和偏自相关是ARIMA模型的核心。BoxJenkins方法提供了一种根据序列的自相关和偏自相关图来识别ARIMA模型的方法。ARIMA的参数由三部分组成:p(自回归参数),d(差分数)和q(移动平均参数)。
识别ARIMA模型有以下三个规则:
•如果滞后n后ACF(自相关图)被切断,则PACF(偏自相关图)消失:ARIMA(0,d,n)确定MA(q)