判断下列函数是否是凸函数_怎么快速判断函数是凹函数还是凸函数

本文介绍了数学中的凸函数和凹函数概念,指出它们在一阶导数和二阶导数上的特性。凸函数在一阶导数递增时对应图形“开口向上”,而凹函数则在一阶导数递减时对应“开口向下”。此外,文章还列举了凸函数的几个关键性质,如水平集的凸性等,这些性质在优化问题和经济模型中有广泛应用。
摘要由CSDN通过智能技术生成

展开全部

设f(x)在区间I上有定义,f(x)在区间I称为是凸函数e68a84e8a2ad3231313335323631343130323136353331333431366335当且仅当:I上的任意两点X1

8459004343ccac8aa8ae4db0d9ca18b2.png

上式中“≤”改成“

凹函数是一个定义在某个向量空间的凸集C(区间)上的实值函数f。设f为定义在区间I上的函数,若对I上的任意两点X1

在函数可导的情况下,如果一阶导娄在区间内是连续增大的,它就是凹函数; 在图形上看就是"开口向上" 反过来,就是凸函数。

由于一阶导数连续增大,所以凹函数的二阶导数大于0; 由于一阶导数连续减小,所以凸函数的二阶导数小于0。

凸函数就是:缓慢升高,快速降低;凹函数就是:缓慢降低,快速升高。

f7900dc2a1eee8d151b64926c19cd32c.gif

扩展资料:

凸函数的主要性质有:

1.若f为定义在凸集S上的凸函数,则对任意实数β≥0,函数βf也是定义在S上的凸函数;

2.若f1和f2为定义在凸集S上的两个凸函数,则其和f=f1+f2仍为定义在S上的凸函数;

3.若fi(i=1,2,…,m)为定义在凸集S上的凸函数,则对任意实数βi≥0,函数βifi也是定义在S上的凸函数;

4.若f为定义在凸集S上的凸函数,则对每一实数c,水平集Sc={x|x∈S,f(x)≤c}是凸集.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值