机器学习之凸函数的四种判断方法

本文介绍机器学习中凸函数的重要性及四种判断方法。凸函数确保优化过程找到全局最小值,文章详细解析了每种判断技巧,适合初学者及进阶学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习之凸函数的四种判断方法

简介
凸函数的最大便利性就是,再进行优化求解的时候,令一阶导为零后,所求出的值必是全局极小值。
判断是否为凸函数有4种方法,如下图所示。(为了避免在电脑上打公式的繁琐,直接以图片的形式展示)
以下是参考《机器学习精讲》书,所书写的自己的学习笔记。

凸函数判断

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值