均值场博弈_平均场博弈论(Mean-field Games)简介

平均场博弈论(Mean-Field Games)研究大量对象间的博弈,探索在竞争环境中,对象如何选择最优决策。它关注的是对象依赖于所有对象决策概率分布的决策过程。在经济、金融和机器学习等领域有广泛应用。本文介绍了平均场博弈的基本概念,包括单个对象的博弈模型以及在无限数量对象情况下的平均场博弈理论,并讨论了动态规划和最优控制在求解均衡策略中的作用。
摘要由CSDN通过智能技术生成

平均场博弈论(Mean-Field Games)研究的是大量对象之间的博弈,探索在一个竞争的环境中,对象如何选择最优的决策。例如股市里大量根据其他用户行为交易股票的股民,海里游动的鱼群,在世界杯现场看足球赛的观众等。目前,平均场博弈论在经济、金融、机器学习等方面都有应用。那什么是平均场呢?平均场的博弈是指在博弈的场景中,某个对象进行决策所依赖的信息来自于场景中所有对象的决策的概率分布,而不是对其他对象的决策进行单个考虑。例如,去市场买菜,我们可以去了解其他所有买菜和卖菜人的买卖行为来做自己买菜的决定,这样是非常麻烦和不方便的。在平均场博弈论中,我们只需要根据菜的市场价来决定自己是否买菜,而这个市场价已经反映了市场中买卖的所有参与者对菜的买卖决策,所以菜的市场价可以看做是一种平均场,反映了市场中其他参与对象决策的概率分布。因此,根据市场价来决策简化了我们做决定的时间和难度。

1.

个对象的博弈

平均场博弈论是对

个对象在

趋向于无穷大的时候的博弈情况的近似。因此,我们首先看看

个对象的博弈。假设现在环境中有

个对象。为了简化模型,我们假设对象之间是不可区分的,例如我们可以想象成有

只蚂蚁,或者

只鸟,每个对象的情况都差不太多,除了所处的状态不同,其他没有多大的差异。

我们用

来表示时间为

的时刻第

个对象所处的位置。为了说明更广泛的情况,我们将

称作第

个对象的状态,它不仅可以表示位置,也可以有其他意义,比如某个股民手里股票的价值等。假设

的变化由下面的常微分方程决定

其中,

的变化率,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值