容量耦合系数模型_平均场博弈论数值算法之系数法

e377bf5a4a7161780fb42e175765e587.png
在上一篇文章《 平均场博弈论(Mean-field Games)简介》中,我们简要介绍了平均场博弈论(Mean-field Games)。平均场博弈论的微分模型是一个前向与后向结合的方程组,即关于值函数
的Hamilton-Jaboci等式与关于
的Fokker-Plank等式耦合在了一起。在这篇文章中,我们介绍一个求解非局部耦合一阶平均场博弈论的数值算法。文章内容来自Levon Nurbekyan和Joao Saude在Fourier Approximation Methods for First-Order Nonlocal Mean-Field Games这篇文章及其后续文章,以及Levon在一些学术会议中的报告。

简介

在上一篇文章《平均场博弈论(Mean-field Games)简介》中,我们介绍了平均场博弈论(Mean-field Games)。平均场博弈论是对大量玩家(Agents)的博弈的情况的近似建模。在模型当中,我们假设每个玩家都是不可区分的,也就是在某一时刻除了玩家所处的状态(可以理解为所处的位置)不一样之外,并没有其他的不同。单个玩家的状态用

维空间中的向量
来表示,即
。每个玩家在时刻
时候,根据当前所处的状态,以及所处环境中其他对象的分布来制定自己的策略,例如在一个密集的地方开车的司机,根据自己目前所处的地点,以及周围的车的分布的情况来决定下一步采取的开车的方向。在平均场博弈论中,其他对象的分布用概率密度函数
来表示,记号
表示了时刻
的时候,位置为
的的玩家的密度,例如,如果我们有
个车辆,用
来表示某个区域的面积,那么在
时刻,在
所表示的面积的范围内车辆的总数应该为
。我们用
来表示对象运行的轨迹。在一个典型的平均场博弈论的模型中,我们需要找到一个轨迹
使得下列的消耗函数最小

其中,在运行运行过程中,在时刻

的时候的能量消耗为
相对于时间的导数在
的时候的值,同时,对象的移动也依赖于其他对象的概率分布,与其他对象的交互的消耗被包含在
中,最后,对象运动完成后,也有一个终止的消耗,被包含在
中。

现在,我们来考察对象与环境中其他对象之间的交互,亦即

这一项。如果对象的行为受周围附近其他对象的影响,而不是仅仅依赖于当前对象所在位置的概率密度,那么我们称这个平均场博弈是非局部耦合的。例如如果
,那么对象的移动只依赖于当前所在位置的概率密度,我们称这种情况下的平均场博弈是局部的,而如果
具有以下形式

其中

可以是表示
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值