anchor设置 yolo_mAP提升40%!YOLO3改进版—— Poly-YOLO:更快,更精确的检测和实例分割...

推荐大家关注“AI深度学习视线”微信公众号,可以快速了解到最新优质的技术干货。

点击下面链接,免费获取资料:

AI深度视线:资源 |【算法学习电子书】+【深度学习视频课】+【SLAM14讲】​zhuanlan.zhihu.com
70709ca835e82e570eacaec2e336669a.png

资源一:电子书资源

以下高清电子书,全部赠送!

25036df7d511726223d1d76fa4228acc.png

4e7f27c8865888fe3c4f387718a26f6f.png

另外还有:

d97c63c08fbd7d178a24c64a7933df8b.png

资源二:深度学习视频资料


1. “花书”深度学习圣经——动手学深度学习
2. 《计算机视觉深度学习入门》共5门视频
3. 《深度学习进阶视频课程》

-------------------------------华丽分割线------------------------------

精彩内容

YOLOv3改进版来了!与YOLOv3相比,Poly-YOLO的训练参数只有其60%,但mAP却提高了40%!并提出更轻量的Poly-YOLO Lite,还扩展到了实例分割上!通读完这篇文章,结合自己使用YOLOV3的经验,觉得这篇改进确实良心之作,改在点上,多边形实例分割也极具创新。

代码刚刚开源:

https://gitlab.com/irafm-ai/poly-yolo

作者团队:奥斯特拉发大学

1 Introduction 摘要

9fbc7e54215be68bf708baeda646c0d0.png

本文提出了性能更好的YOLOv3新版本,并扩展了名为Poly-YOLO的实例分割。Poly-YOLO建立在YOLOv3的原始思想的基础上,并消除了它的两个弱点:
大量重写的标签 && 无效的anchor分配
Poly-YOLO通过使用stairstep上采样通过hypercolumn技术聚合轻型SE-Darknet-53骨干网中的特征来减少问题,并产生高分辨率的单尺度输出。与YOLOv3相比:
Poly-YOLO的可训练参数只有60%,但mAP却提高了40%。

  • 更少参数和更低输出分辨率的Poly-YOLO Lite,具有与YOLOv3相同的精度,但体积小三倍,速度快两倍,更适用于嵌入式设备
  • 最后,Poly-YOLO使用边界多边形执行实例分割。训练网络以检测在极坐标网格上定义的尺寸无关的多边形。预测每个多边形的顶点具有可信度,因此Poly-YOLO生成具有不同数量顶点的多边形。

1953d56910c67f55541ce40367971751.png

2 YOLOv3 problem

YOLOv3在设计时,遇到了两个我们发现的问题,而这两个问题在原始论文中没有描述:重写标签和在输出尺度上不平衡的锚点分布。解决这些问题对于提高YOLO的性能至关重要。

2.1 Label rewriting

由于YOLO系列都是基于图像cell栅格作为单元进行检测,以416*416大小的图像为例,在图像分辨率随着卷积下降到13*13的特征图大小时&#

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值