双边z变换公式_信号与系统之连续时间傅里叶变换—学习笔记(奥本海姆教材)...

傅里叶、拉普拉斯、z变换是信号与系统这门学科的灵魂。这三种变换既有联系,又有区别。无论你的专业是通信工程、电子信息工程、电气工程及其自动化、计算机科学...都需要用到这三种变换来对具体过程具体分析。可以毫不夸张的说,这三种变换对于一个理工生来说极其重要。这个学期我也在学习信号与系统,希望分享一点自己对于这门学科的认识,同时加深自己对于信号与系统认识。有不足或者错误之处,还请指正!

废话不多说,先来看一下傅里叶变换!

从数学的角度上来说,傅里叶变换、拉普拉斯变换与Z变换都是一种积分运算,本质上具有相联性,而拉普拉斯变换与Z变换都可以通过傅里叶变换导出,由此可见傅里叶变换的重要。

一、傅里叶级数

在正式介绍傅里叶变换之前,先来介绍傅里叶级数。它分为两种形式:

1.三角形式的傅里叶级数

d0e6ee5963c6c9b8295f2e49aa3d151c.png

其中

为周期为
P的周期信号

从三角形式的傅里叶级数可以看出:

一个周期信号可以看成是直流分量(A0/2)、基波(

)与n次谐波(n*
)的线性组合

但是由于三角傅里叶级数的系数较难求解,我们一般在分析中不会采用这种形式,而转而采用第二种:

2.指数形式的傅里叶级数

综合公式:(synthesis equation)

275b8b994585fe41417c1a873076950d.png

分析公式:(analysis equation)

8ed89be989ee3f8b844b00659729f3b2.png

(1) 其中

称为
幅度频谱,这些系数是对信号x(t)中每一个谐波分量大小的度量。 arg
称为
幅度频谱。

(2)系数

是x(t)的直流分量,也是
x(t)在一个周期内的平均值

3.傅里叶级数的收敛条件

连续时间信号的傅里叶级数收敛条件——狄利克雷条件

(1)在任何周期内,x(t)必须绝对可积,即:

0ed0d8aec523ae8a2fcf316f979fe782.png

这一条件保证每一个系数

都是有限值。

(2)在任意有限区间内,x(t)具有有限个起伏变化。也就是说,x(t)的最大值和最小值的数目有限。

(3)在x(t)的任何有限区间内,只有有限个不连续点,且这些不连续点上函数为有限值

以上就是著名的狄利克雷条件,它是傅里叶变换存在的充分条件。

二、连续时间傅里叶变换

1.非周期信号的CTFT表示

非周期信号傅里叶变换对

373ada7ce93f282314e299561445340f.png
傅里逆叶变换(综合式)

e4a75b20f3436da0aaf25b373faf598e.png
傅里叶变换(分析式)

2.周期信号的CTFT表示

由于周期信号不满足狄利克雷条件中的绝对可积,如果将周期信号直接代入上面的公式,积分是不收敛的,但这并不意味这周期信号的傅里叶变换不存在

在正式讲周期信号的CTFT之前,我们先来了解一下

的傅里叶变换

由分析公式

e4a75b20f3436da0aaf25b373faf598e.png

代入x(t)=

,我们发现结果并不收敛。没有关系,此路不通我们另辟蹊径,用一条路找到它的傅里叶变换。

因为δ(t)的傅里叶变换是1

6a9ff873db6b3f36c8e6af481dbcb592.png

(根据单位冲激函数的筛选性质,将x(t)=δ(t)代入分析公式,很容易得出δ(t)的傅里叶变换就是1)

那么有:

2fa16fe573513a00ffc3b6f92591984b.png

把2π乘到等式左边:

871327e11fd943c9ab706dd6a8084072.png

另t=-w,w=a:

8dffac5556efb6aea5a3c828d67fd4fe.png

于是有:

1c36c350f31000ce830cca9390956913.png

对比傅里叶变换的分析式可得:

FT(

)=2πδ(w-

有了上面这个变换对,我们就可以求出周期信号的傅里叶变换。

对于周期信号

,将其进行傅里叶级数展开:

8a29aa754fa45ddfab8a08c815d2eef5.png

对等式两边进行傅里叶变换:

FT(

)=

结论:周期信号的傅里叶变换是一串冲激,这些冲激位于信号频率为

(k=0,±1,±2...)
处,冲激的强度等于傅里叶级数中对应系数
的2π倍。

三、傅里叶变换的性质

这里我们直接给出傅里叶变换性质的表格汇总

316d0af405fe979a7b97b77e7ad9d4fe.png

具体的证明这里就不给出了,我有性质证明的手稿,有需要的小伙伴可以私信我。上面的这些性质都需要牢记,不需要死记硬背,自己推导一遍,理解性质的含义,在这个基础之上再去背,记的会更牢。

四、常见傅里叶变换

a53bc339fd42fa4fe8421cfa31a2a10b.png

上面这些常见傅里叶变换可以记一些比较常见的,比如单位阶跃函数、矩形波、周期方波这些比较难推导的。还是一样,如果需要这些傅里叶变换推导过程的小伙伴可以私信我

下面对几个公式进行总结

傅里叶变换对:

373ada7ce93f282314e299561445340f.png
综合式

e4a75b20f3436da0aaf25b373faf598e.png
分析式

傅里叶级数:

275b8b994585fe41417c1a873076950d.png
综合式

8ed89be989ee3f8b844b00659729f3b2.png
分析式

可能有小伙伴觉得这四个公式很容易混淆,我是这么记忆的:CTFS的综合式前面没有系数,那么CTFT的综合式前面就有系数;CTFS的分析式前面有系数,那么CTFT的综合式前面就没有系数。如果是离散变量(k、n)就是累加求和,如果是连续变量(t、w)就是积分。记忆方法因人而异,可以多比较总结一下,这里就不赘述了。

最后,码字不易,路过的小伙伴们点个赞再走呗(*^▽^*)后面也会陆续分享拉普拉斯变换、Z变换的笔记~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信号与系统是一门研究信号的传输、处理和分析等问题的学科。傅里叶变换、拉普拉斯变换和z变换则是信号与系统中的三种重要数学工具。下面,我们来汇总一下傅里叶变换、拉普拉斯变换和z变换公式以及相关性质。 傅里叶变换公式: $$F(\omega)=\mathcal{F}\{f(t)\}=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$ 逆傅里叶变换公式: $$f(t)=\mathcal{F}^{-1}\{F(\omega)\}=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$$ 拉普拉斯变换公式: $$F(s)=\mathcal{L}\{f(t)\}=\int_{0^-}^{\infty}f(t)e^{-st}dt$$ 逆拉普拉斯变换公式: $$f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)e^{st}ds$$ z变换公式: $$F(z)=\mathcal{Z}\{f(n)\}=\sum_{n=-\infty}^{\infty}f(n)z^{-n}$$ 逆z变换公式: $$f(n)=\mathcal{Z}^{-1}\{F(z)\}=\frac{1}{2\pi j}\oint_C F(z)z^{n-1}dz$$ 傅里叶变换、拉普拉斯变换、z变换的基本性质: 1. 线性性质:对于任意常数a,b,有$\mathcal{F}\{af(t)+bg(t)\}=a\mathcal{F}\{f(t)\}+b\mathcal{F}\{g(t)\}$,$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{af(n)+bg(n)\}=a\mathcal{Z}\{f(n)\}+b\mathcal{Z}\{g(n)\}$。 2. 平移性质:对于任意常数$a$,有$\mathcal{F}\{f(t-a)\}=e^{-j\omega a}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(t-a)\}=e^{-sa}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(n-a)\}=z^{-a}\mathcal{Z}\{f(n)\}$。 3. 改变因子:对于任意常数$a$,有$\mathcal{F}\{f(at)\}=\frac{1}{|a|}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(an)\}=z^{-n}\mathcal{Z}\{f(n)\}$。 4. 卷积定理:对于两个信号$f(t)$和$g(t)$,有$\mathcal{F}\{f(t)*g(t)\}=\mathcal{F}\{f(t)\}\cdot\mathcal{F}\{g(t)\}$,$\mathcal{L}\{f(t)*g(t)\}=\mathcal{L}\{f(t)\}\cdot\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{f(n)*g(n)\}=\mathcal{Z}\{f(n)\}\cdot\mathcal{Z}\{g(n)\}$。 5. 能量守恒:对于信号$f(t)$或$f(n)$,有$\int_{-\infty}^{\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega$,$\int_{0^-}^{\infty}|f(t)|^2dt=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}|F(s)|^2ds$,$\sum_{n=-\infty}^{\infty}|f(n)|^2=\frac{1}{2\pi}\oint_C |F(z)|^2\frac{dz}{z}$。 通过傅里叶变换、拉普拉斯变换和z变换公式及其相关性质,我们可以对信号进行分析和处理,从而更好地理解和设计信号与系统

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值