【剑指offer】数据流中的中位数(最大最小堆实现)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_36372879/article/details/84575465

题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


构建一个最大堆和最小堆,并且保证最大堆中的数据都要小于最小堆的数据,也就是最大堆的根节点小于最小堆的根节点,插入的时候交替插入
如果插入到最大堆:如果输入小于最大堆的根节点,插入到最大堆,如果大于最大堆的根节点,插入最小堆,将最小堆的根节点插入到左边的最大堆
如果插入到最小堆:如果输入的大于最小堆的根节点,插入到最小堆,如果小于最小堆的根节点,那么插入最大堆,最大堆的根节点插入到右边的最小堆

import heapq
class Solution:
    def __init__(self):
        self.maxHeap = []
        self.minHeap = []
        self.flag = 1
    def Insert(self, num):
        # write code here
        if self.flag:
            if self.minHeap == [] or num <= self.minHeap[0]: #插入最大堆
                self.maxHeap.append(num) #插入
                heapq.heapify(self.maxHeap) #调整
            elif num > self.minHeap[0]:  #大于最小堆最小元素,需要插入到最小堆,并且替换
                self.maxHeap.append(heapq.heappop(self.minHeap))
                heapq._heapify_max(self.maxHeap)
                heapq.heappush(self.minHeap, num)
            self.flag = 0
        else:
            if self.maxHeap == [] or num >= self.maxHeap[0]:  #插入最小堆
                heapq.heappush(self.minHeap, num)
            elif num < self.maxHeap[0]: #插入最大堆,并把最大堆的根替换到右边的最小堆
                heapq.heappush(self.minHeap, heapq.heappop(self.maxHeap))  #最大堆的根
                self.maxHeap.append(num)
                heapq._heapify_max(self.maxHeap)
            self.flag = 1
    def GetMedian(self):
        # write code here
        if self.flag:
            return float('{:.2f}'.format((self.maxHeap[0] + self.minHeap[0]) / 2))
        else:
            return float('{:.2f}'.format(self.maxHeap[0]))

测试

sol = Solution()
sol.Insert(5)
sol.Insert(2)
sol.Insert(6)
sol.Insert(7)
sol.Insert(8)
print(sol.maxHeap)
print(sol.minHeap)
print(sol.GetMedian())

输出:

[6, 2, 5]
[7, 8]
6.0
展开阅读全文

没有更多推荐了,返回首页