1.数据介绍
1.1 数据简介
宫鹏老师团队基于Google Earth Engine平台,使用到全球13万个样本点,利用随机森林分类方法对Sentinel-2影像,进行了2017年的10米分辨率全球土地覆盖制图。该数据集一共分为10类。
类别 | Name | Code |
---|---|---|
耕地 | Cropland | 10 |
林地 | Forest | 20 |
草地 | Grassland | 30 |
灌木 | Shrubland | 40 |
湿地 | Wetland | 50 |
水体 | Water | 60 |
冻土 | Tundra | 70 |
不透水面 | Impervious surface | 80 |
裸地 | Bareland | 90 |
雪/冰 | Snow/Ice | 100 |
1.2 数据精度
该数据集的总体精度为72.76%,各类别的用户精度、生产者精度如下表所示:
2.数据下载
这里介绍两种数据下载方式
2.1官网下载方法
2.1.1下载网址
http://data.ess.tsinghua.edu.cn/fromglc2017v1.html,打开直接进入下载界面,无需注册与审核。
2.1.2影像确定
该网站按照影像的经纬度提供数据下载,影像名称代表的含义分别如下:
其中经纬度是影像的最左下角坐标:
在官网每一景土地覆盖影像的坐标是偶数递增,其中最高纬度为南北纬84°:
纬度:-84,-82…-4,-2,0,2,4…82,84
经度:-180,-178,…,-4,-2,0,2,4,…178
假如我们下载北京市中心的影像(北纬39°56′,东经116°20′),那需要下载的是北纬38°,东经116°的影像:
下载影像记住两点:影像名称代表的是左下角经纬度;经纬度以偶数递增。
2.2遥感云计算下载方法
这里介绍第二种影像下载方法,PIE-Engine。PIE-Engine里面有FROM_GLC的10米分辨率数据(2017年)。
有这个数据,就可以直接用PIE-Engine导出按行政边界裁剪的10米分辨率土地覆盖数据。
2.2.1 研究区准备
在PIE里面上传研究区数据,我上传的是四川省_资阳市_乐至县的行政区数据。
待数据上传后,与GEE不同,该研究区不能直接调用,需要转为geometry类型。
//研究区加载 LZ(四川省_