pivot position_矩阵里的pivot是什么?

主元在矩阵算法中扮演重要角色,特别是在线性规划的单纯形法中。它是矩阵行阶梯形式中第一个非零元素,对于算法的正确运行至关重要。选择主元的策略可能包括选取绝对值最大的元素或随机元素。主元所在的行被称为主元行,其所在列为主元列。在快速排序中,主元用于划分元素,递归地排序其左侧和右侧元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

共回答了17个问题采纳率:94.1%

一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.

wiki的解释如下:

Pivot element

(the first element distinct from zero in a matrix in echelon form)

The pivot or pivot element is the element of a matrix,which is selected first by an algorithm (e.g.Gaussian elimination,Quicksort,Simplex algorithm),to do certain calculations with the matrix.

The above mentioned matrix algorithms require an entry distinct from zero in pivot position to work properly or at all respectively.Depending on the algorithm either one (random) element distinct from zero or the element with the greatest absolute value in a row or column is chosen.This is called pivotization.The row containing the pivot element is called pivot row,the pivot element's column is called pivot column.

Pivot element in Quicksort means the element that is selected as boundary for partitioning.Quicksort sorts all elements „left“ and „right“ of the pivot element recursively.

1年前

1

function linear_solver_comparison() % 参数设置 sizes = 10:10:100; methods = {'高斯消去', '列主消去', '三角分解', 'MATLAB内置'}; num_tests = length(sizes); times = zeros(length(methods), num_tests); errors = zeros(length(methods), num_tests); %% 新增单例验证部分 n_example = 10; [A_example, b_example] = generate_matrix(n_example, true); % 固定随机种子 fprintf('===== 单例验证(n=10) =====\n'); fprintf('系数矩阵A:\n'); disp(A_example); fprintf('右侧向量b:\n'); disp(b_example'); % 各算法求解演示 x_gauss = gaussian_elimination(A_example, b_example); x_pivot = gaussian_column_pivot(A_example, b_example); x_lu = lu_decomposition(A_example, b_example); x_matlab = A_example\b_example; fprintf('\n高斯消去解:\n'); disp(x_gauss'); fprintf('列主消去解:\n'); disp(x_pivot'); fprintf('三角分解解:\n'); disp(x_lu'); fprintf('MATLAB内置解:\n'); disp(x_matlab'); %% 原测试框架保留 fprintf('\n===== 开始规模测试 =====\n'); for i = 1:num_tests n = sizes(i); [A, b] = generate_matrix(n); % 随机生成矩阵 % 各方法测试(代码保持不变)... % ...(同原始测试循环代码) end plot_results(sizes, times, errors, methods); end %% 修改后的矩阵生成函数(增加种子控制) function [A, b] = generate_matrix(n, fixed) if nargin < 2 || ~fixed rng('shuffle'); else rng(0); % 固定种子模式 end A = rand(n) + n*eye(n); b = rand(n, 1); end %% 其他子函数保持不变...请写出完整代码,不要省略
最新发布
03-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值