二元函数可微与可导的关系_二元函数的连续偏导数可微之间的关系

41528d3028836879cd698677c3999917.gif二元函数的连续偏导数可微之间的关系

目 录 摘要……………………………………………………………………………………………1 关键词…………………………………………………………………………………………1 Abstract………………………………………………………………………………………1 Key words……………………………………………………………………………………1 引言……………………………………………………………………………………………1 1二元函数连续、偏导数、可微三个概念的定 义……………………………………………1 2二元函数连续、偏导数、可微三个概念之间的关 系………………………………………2 2.1二元函数连续与偏导数存在之间的关系………………………………………………2 2.2二元函数连续与可微之间的关系………………………………………………………3 2.3二元函数可微与偏导数存在之间的关系………………………………………………3 2.4二元函数可微与偏导数连续之间的关系………………………………………………4 二元函数连续、偏导数、可微的关系 图………………………………………………………6 参考文献………………………………………………………………………………………7 致谢……………………………………………………………………………………………8本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、 偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件 下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对 于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理 论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设 为定义在点集 上的二元函数, ( 或者是 的聚点, f 2 D R  0 D P  0 P D 或者是 的孤立点) ,对于任给的正数 ,总存在相应的正数 ,只要 D   ,就有 ,则称 关于集合 在点 连续. 0 , ) ( D P U P    0 ) | | ( ) ( f P f P    f D 0 P 定义2 设函数 ,若 且 在 的某一邻域 ( , ),( , ) z f x y x y D   0 0 , ) ( y D x  0 , ) ( y f x 0 x 内有定义,则当极限 存在时,则称这个 0 0 0 0 0 0 0 0 ( , ) ) ( , ) ( , lim lim x x x f x y f x y f x x y x x           本科生毕业论文 3 极限为函数 在点 关于 的偏导数,记作 . f 0 0 , ) ( y x x 0 0 ( , ) | x y f x   定义3 设函数 在点 某邻域 内有定义,对于 中的 ( , ) z f x y  0 0 0 , ) ( y P x 0 ( ) U P 0 ( ) U P 点 ,若函数 在点 处的全增量可表示为 0 0 , ) ( , ) ( y P x y x x y      f 0 P ,其中 、 是仅与点 有关 0 0 0 0 ) ( , ) ( , ( ) A z f x x y y f x y x B y               A B 0 P 的常数, 是较 高阶的无穷小量,则称函数 在点 处可微. 2 2 , ( ) x y         f 0 P 2 二元函数连续、偏 导数、可微三个概念之 间的关系 2.1 二元函数连续与偏导数存在之间的关系 例 在 偏导数存在但不连续. [1] 1 2 2 ,( , ) (0,0) ( , ) 0, ( , ) (0,0) xy x y x y f x y x y          (0,0) 证明 因为 , 0 0 ( ,0) (0,0) 0 0 (0,0) lim lim 0 x x x f x f f x x        同理可知 . 所以 在 偏导数存在. (0,0) 0 y f  ( , ) f x y (0,0) 因为 极限不存在,所以 在 不连续. 2 2 0, 0 lim x y xy x y    ( , ) f x y (0,0) 例 在 点连续,但不存在偏导数. 2 [2] 2 2 ( , ) f x y x y   (0,0) 证明 因为 , 2 2 0, 0 0, 0 lim ( , ) lim 0 (0,0) x y x y f x y x y f         所以 在 点连续, 2 2 ( , ) f x y x y   (0,0) 因为 ,该极限不存在, 2 0 0 ( ,0) (0,0) (0,0) lim lim x x x f x f x f x x      同理 也不存在. (0,0) y f 所以 在点 连续,但不存在偏导数. 2 2 ( , ) f x y x y   (0,0) 此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续 不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 2.2 二元函数连续与可微之间的关系本科生毕业论文 4 定理 若 在点 可微,则 在点 一定连续. 1 [3] ( , ) z f

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论

打赏作者

Jason不跪

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值