二元函数可微与可导的关系_二元函数的连续偏导数可微之间的关系

本文深入探讨了二元函数的连续性、偏导数存在及可微性之间的关系。举例说明了即使函数连续,偏导数也可能不存在,反之亦然。同时,证明了函数在某点可微则必在该点连续,揭示了二元函数与一元函数在这些性质上的差异。此外,还通过定理阐述了连续与可微之间的联系。
摘要由CSDN通过智能技术生成

41528d3028836879cd698677c3999917.gif二元函数的连续偏导数可微之间的关系

目 录 摘要……………………………………………………………………………………………1 关键词…………………………………………………………………………………………1 Abstract………………………………………………………………………………………1 Key words……………………………………………………………………………………1 引言……………………………………………………………………………………………1 1二元函数连续、偏导数、可微三个概念的定 义……………………………………………1 2二元函数连续、偏导数、可微三个概念之间的关 系………………………………………2 2.1二元函数连续与偏导数存在之间的关系………………………………………………2 2.2二元函数连续与可微之间的关系………………………………………………………3 2.3二元函数可微与偏导数存在之间的关系………………………………………………3 2.4二元函数可微与偏导数连续之间的关系………………………………………………4 二元函数连续、偏导数、可微的关系 图………………………………………………………6 参考文献………………………………………………………………………………………7 致谢……………………………………………………………………………………………8本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、 偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件 下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对 于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理 论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设 为定义在点集 上的二元函数, ( 或者是 的聚点, f 2 D R  0 D P  0 P D 或者是 的孤立点) ,对于任给的正数 ,总存在相应的正数 ,只要 D   ,就有 ,则称 关于集合 在点 连续. 0 , ) ( D P U P    0 ) | | ( ) ( f P f P    f D 0 P 定义2 设函数 ,若 且 在 的某一邻域 ( , ),( , ) z f x y x y D   0 0 , ) ( y D x  0 , ) ( y f x 0 x 内有定义,则当极限 存在时,则称这个 0 0 0 0 0 0 0 0 ( , ) ) ( , ) ( , lim lim x x x f x y f x y f x x y x x           本科生毕业论文 3 极限为函数 在点 关于 的偏导数,记作 . f 0 0 , ) ( y x x 0 0 ( , ) | x y f x   定义3 设函数 在点 某邻域 内有定义,对于 中的 ( , ) z f x y  0 0 0 , ) ( y P x 0 ( ) U P 0 ( ) U P 点 ,若函数 在点 处的全增量可表示为 0 0 , ) ( , ) ( y P x y x x y      f 0 P ,其中 、 是仅与点 有关 0 0 0 0 ) ( , ) ( , ( ) A z f x x y y f x y x B y               A B 0 P 的常数, 是较 高阶的无穷小量,则称函数 在点 处可微. 2 2 , ( ) x y         f 0 P 2 二元函数连续、偏 导数、可微三个概念之 间的关系 2.1 二元函数连续与偏导数存在之间的关系 例 在 偏导数存在但不连续. [1] 1 2 2 ,( , ) (0,0) ( , ) 0, ( , ) (0,0) xy x y x y f x y x y          (0,0) 证明 因为 , 0 0 ( ,0) (0,0) 0 0 (0,0) lim lim 0 x x x f x f f x x        同理可知 . 所以 在 偏导数存在. (0,0) 0 y f  ( , ) f x y (0,0) 因为 极限不存在,所以 在 不连续. 2 2 0, 0 lim x y xy x y    ( , ) f x y (0,0) 例 在 点连续,但不存在偏导数. 2 [2] 2 2 ( , ) f x y x y   (0,0) 证明 因为 , 2 2 0, 0 0, 0 lim ( , ) lim 0 (0,0) x y x y f x y x y f         所以 在 点连续, 2 2 ( , ) f x y x y   (0,0) 因为 ,该极限不存在, 2 0 0 ( ,0) (0,0) (0,0) lim lim x x x f x f x f x x      同理 也不存在. (0,0) y f 所以 在点 连续,但不存在偏导数. 2 2 ( , ) f x y x y   (0,0) 此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续 不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 2.2 二元函数连续与可微之间的关系本科生毕业论文 4 定理 若 在点 可微,则 在点 一定连续. 1 [3] ( , ) z f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值