分段函数的期望和方差_第一章 概率论基础 (六)特征函数

特征函数作为概率论中的关键工具,类似Fourier变换,用于求解实值随机变量的期望和方差。它能唯一确定一个分布律,并与随机变量的独立性相关联。特征函数的性质包括一致连续性、反演公式以及与协方差的关系。Levy连续性定理也在特征函数的研究中占有一定地位,尽管证明未在此详述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

991be3f49c8c129da006f849d03d592a.png

特征函数是概率论中非常重要的工具,它有点像分析里面的Fourier变换。特征函数可以用于求实值随机变量的期望和方差;同时也可用于求某个随机变量的分布律,这是因为,特征函数有一个最重要的结果,就是特征函数唯一确定一个分布律。在下一节,将会看到特征函数较多地运用。

这里的特征函数是

的,其中
是正整数。内容主要有(以下用r.v.表示随机变量)
  1. 特征函数的定义、基本性质。例如,证明了特征函数一致连续,揭示了特征函数在原点的梯度与r.v.期望的联系、在原点的Hesse矩阵与r.v.协方差矩阵的联系。详见命题1.31;
  2. 特征函数的反演公式,由此推出特征函数唯一确定一个分布律;
  3. 特征函数与r.v.独立性的联系;
  4. Levy连续性定理(这里只给结论,不给证明,提供了相关参考文献)

f127778b186b21745cc10c667e143771.png

62e7a21ecae3433beb1ae4de79213b45.png

7ad25593fafbaf8a700ea1aa5394846a.png

037685b5b3cc527132f8262d67ad40e4.png

68db99eb400901a2ab7e3d6cef4a5d8d.png

165c4540e4012ab8aed105f436454560.png

29d18cb7cb7744ee9f8c462fee902b76.png

fcc0e4a03d34b0ea3925d92a71432fc4.png

参考文献

Baldi, P. Stochastic Calculus-An Introduction Through Theory and Exercises. Springer, 2017.

严加安. 测度论讲义. 北京:科学出版社,2004.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值