
特征函数是概率论中非常重要的工具,它有点像分析里面的Fourier变换。特征函数可以用于求实值随机变量的期望和方差;同时也可用于求某个随机变量的分布律,这是因为,特征函数有一个最重要的结果,就是特征函数唯一确定一个分布律。在下一节,将会看到特征函数较多地运用。
这里的特征函数是
- 特征函数的定义、基本性质。例如,证明了特征函数一致连续,揭示了特征函数在原点的梯度与r.v.期望的联系、在原点的Hesse矩阵与r.v.协方差矩阵的联系。详见命题1.31;
- 特征函数的反演公式,由此推出特征函数唯一确定一个分布律;
- 特征函数与r.v.独立性的联系;
- Levy连续性定理(这里只给结论,不给证明,提供了相关参考文献)








参考文献
Baldi, P. Stochastic Calculus-An Introduction Through Theory and Exercises. Springer, 2017.
严加安. 测度论讲义. 北京:科学出版社,2004.