COCO 2017 数据集下载

参考COCO 2017 数据集下载 - 云+社区 - 腾讯云

COCO官方:地址

COCO2017数据集简介:

CoCo数据集一共有五种标注类型,分别(5种类型):

  • 目标检测,
  • 关键点检测,
  • 素材分割,
  • 全景分割,
  • 图像说明

标注信息使用 JSON 格式存储( annotations ), 预处理通过COCO API用于访问和操作所有“标注”

COCO 2017下载:地址

Images:

  • 2017 Train images [118K/18GB] :下载
  • 2017 Val images [5K/1GB]:下载
  • 2017 Test images [41K/6GB]:下载
  • 2017 Unlabeled images [123K/19GB]:下载

Annotations:

  • 2017 annotations_trainval2017 [241MB]:下载
  • 2017 Stuff Train/Val annotations [1.1GB]:下载
  • 2017 Testing Image info [1MB]:下载
  • 2017 Unlabeled Image info [4MB]:下载

### 下载 COCO 2017 数据集 官方提供了详细的下载指导,访问 COCO 官网可以找到对应的下载页面[^1]。对于具体的 COCO 2017 数据集,可直接通过提供的链接获取未标注图像压缩包[^2]。 #### 使用 Python 脚本自动下载 为了简化下载过程并确保所有必要的部分都被正确获取,下面提供了一个基于 Python 的脚本来自动化这一流程: ```python import os from urllib.request import urlretrieve def download_coco_2017(output_dir='./'): urls = [ "http://images.cocodataset.org/zips/train2017.zip", "http://images.cocodataset.org/zips/val2017.zip", "http://images.cocodataset.org/zips/test2017.zip", "http://images.cocodataset.org/annotations/annotations_trainval2017.zip" ] filenames = ["train2017.zip", "val2017.zip", "test2017.zip", "annotations_trainval2017.zip"] if not os.path.exists(output_dir): os.makedirs(output_dir) for i, url in enumerate(urls): output_path = os.path.join(output_dir, filenames[i]) print(f'Downloading {filenames[i]}...') urlretrieve(url, output_path) print('Download completed.') download_coco_2017() ``` 这段代码定义了一个函数 `download_coco_2017` 来批量下载训练集、验证集、测试集以及相应的注解文件。这些资源分别对应于不同用途的数据子集,其中训练集含有118287张图片用于模型训练;验证集有5000张图片可用于评估模型性能;而测试集则由40670张图片组成,通常用来最终检验算法效果[^3]。 完成上述操作之后,如果计划使用 COCO 数据集执行特定任务比如目标检测或实例分割,则可能还需要安装额外的支持工具如 pycocotools 库来处理数据集中的标签信息。这可以通过克隆 cocoapi GitHub 仓库并在其 PythonAPI 子目录下运行构建命令实现[^4]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值