COCO2017 数据集的下载方法

下载方法(一)

COCO 数据集下载地址:
https://cocodataset.org/#home在这里插入图片描述

# images
wget http://images.cocodataset.org/zips/train2017.zip   # train dataset
wget http://images.cocodataset.org/zips/val2017.zip     # validation dataset
wget http://images.cocodataset.org/zips/test2017.zip    # test dataset
wget http://images.cocodataset.org/zips/unlabeled2017.zip


# annotations
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip
wget http://images.cocodataset.org/annotations/image_info_test2017.zip
wget http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip

下载方法二:

mmdetection 下载

在这里插入图片描述
我们提供了下载 COCO 等数据集的脚本,你可以运行 python tools/misc/download_dataset.py --dataset-name coco2017 下载 COCO 数据集。

下载方法三:

opendatalab 下载

https://opendatalab.com/OpenDataLab/COCO_2017/cli/main


  pip install openxlab #安装

  pip install -U openxlab #版本升级
  
  openxlab login #进行登录,输入对应的AK/SK
  
  openxlab dataset info --dataset-repo OpenDataLab/COCO_2017 #数据集信息查看

  openxlab dataset ls --dataset-repo OpenDataLab/COCO_2017 #数据集文件列表查看

  openxlab dataset get --dataset-repo OpenDataLab/COCO_2017 #数据集下载
  
  openxlab dataset download --dataset-repo OpenDataLab/COCO_2017 --source-path /README.md --target-path /path/to/local/folder #数据集文件下载

在这里插入图片描述

### 下载 COCO 2017 数据集 官方提供了详细的下载指导,访问 COCO 官网可以找到对应的下载页面[^1]。对于具体的 COCO 2017 数据集,可直接通过提供的链接获取未标注图像压缩包[^2]。 #### 使用 Python 脚本自动下载 为了简化下载过程并确保所有必要的部分都被正确获取,下面提供了一个基于 Python 的脚本来自动化这一流程: ```python import os from urllib.request import urlretrieve def download_coco_2017(output_dir='./'): urls = [ "http://images.cocodataset.org/zips/train2017.zip", "http://images.cocodataset.org/zips/val2017.zip", "http://images.cocodataset.org/zips/test2017.zip", "http://images.cocodataset.org/annotations/annotations_trainval2017.zip" ] filenames = ["train2017.zip", "val2017.zip", "test2017.zip", "annotations_trainval2017.zip"] if not os.path.exists(output_dir): os.makedirs(output_dir) for i, url in enumerate(urls): output_path = os.path.join(output_dir, filenames[i]) print(f'Downloading {filenames[i]}...') urlretrieve(url, output_path) print('Download completed.') download_coco_2017() ``` 这段代码定义了一个函数 `download_coco_2017` 来批量下载训练集、验证集、测试集以及相应的注解文件。这些资源分别对应于不同用途的数据子集,其中训练集含有118287张图片用于模型训练;验证集有5000张图片可用于评估模型性能;而测试集则由40670张图片组成,通常用来最终检验算法效果[^3]。 完成上述操作之后,如果计划使用 COCO 数据集执行特定任务比如目标检测或实例分割,则可能还需要安装额外的支持工具如 pycocotools 库来处理数据集中的标签信息。这可以通过克隆 cocoapi GitHub 仓库并在其 PythonAPI 子目录下运行构建命令实现[^4]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值