最小基因变化

文章描述了一个编程问题,给定两个基因序列start和end以及一个基因库bank,目标是找到从start到end所需的最少基因变化次数,确保变化后的序列在bank中。使用广度优先搜索和邻接表的方法优化搜索过程。
摘要由CSDN通过智能技术生成

基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 'A''C''G' 和 'T' 之一。

假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。

  • 例如,"AACCGGTT" --> "AACCGGTA" 就是一次基因变化。

另有一个基因库 bank 记录了所有有效的基因变化,只有基因库中的基因才是有效的基因序列。(变化后的基因必须位于基因库 bank 中)

给你两个基因序列 start 和 end ,以及一个基因库 bank ,请你找出并返回能够使 start 变化为 end 所需的最少变化次数。如果无法完成此基因变化,返回 -1 。

注意:起始基因序列 start 默认是有效的,但是它并不一定会出现在基因库中。

示例 1:

输入:start = "AACCGGTT", end = "AACCGGTA", bank = ["AACCGGTA"]
输出:1

示例 2:

输入:start = "AACCGGTT", end = "AAACGGTA", bank = ["AACCGGTA","AACCGCTA","AAACGGTA"]
输出:2

示例 3:

输入:start = "AAAAACCC", end = "AACCCCCC", bank = ["AAAACCCC","AAACCCCC","AACCCCCC"]
输出:3

思路与算法

经过分析可知,题目要求将一个基因序列A变化至另一个基因序列B,需要满足一下条件:序列A与 序列B之间只有一个字符不同;
变化字符只能从\texttt{`A', `C', `G', `T'} 中进行选择;
变换后的序列B一定要在字符串数组\textit{bank}中。
已知方法一中广度优先搜索方法,我们可以对\textit{bank}进行预处理,只在合法的基因变化进行搜索即可。由于题目中给定的\textit{bank}基因库的长度较小,因此可以直接在对\textit{bank}进行预处理,找到基因库中的每个基因的合法变换,而不需要像方法一中每次都需要去计算基因的变化序列,我们将每个基因的合法变化关系存储在邻接表\textit{adj}中,每次基因变化搜索只在\textit{adj}中进行即可。

代码

class Solution {
public:
    int minMutation(string start, string end, vector<string>& bank) {
        int m = start.size();
        int n = bank.size();
        vector<vector<int>> adj(n);
        int endIndex = -1;
        for (int i = 0; i < n; i++) {
            if (end == bank[i]) {
                endIndex = i;
            }
            for (int j = i + 1; j < n; j++) {
                int mutations = 0;
                for (int k = 0; k < m; k++) {
                    if (bank[i][k] != bank[j][k]) {
                        mutations++;
                    }
                    if (mutations > 1) {
                        break;
                    }
                }
                if (mutations == 1) {
                    adj[i].emplace_back(j);
                    adj[j].emplace_back(i);
                }
            }
        }
        if (endIndex == -1) {
            return -1;
        }

        queue<int> qu;
        vector<bool> visited(n, false);
        int step = 1;
        for (int i = 0; i < n; i++) {
            int mutations = 0;
            for (int k = 0; k < m; k++) {
                if (start[k] != bank[i][k]) {
                    mutations++;
                }
                if (mutations > 1) {
                    break;
                }
            }
            if (mutations == 1) {
                qu.emplace(i);
                visited[i] = true;
            }
        }        
        while (!qu.empty()) {
            int sz = qu.size();
            for (int i = 0; i < sz; i++) {
                int curr = qu.front();
                qu.pop();
                if (curr == endIndex) {
                    return step;
                }
                for (auto & next : adj[curr]) {
                    if (visited[next]) {
                        continue;
                    }
                    visited[next] = true;
                    qu.emplace(next);
                }
            }
            step++;
        }
        return -1;
    }
};


复杂度分析

时间复杂度:O(m \times n^2),其中m为基因序列的长度,n为数组\textit{bank}的长度。计算合法的基因变化\textit{adj}需要的时间为O(m \times n^2),广度优先搜索时,队列中最多有n个元素,需要的时间为 O(n),因此时间复杂度为O(m \times n^2)

空间复杂度:O(n^2),其中n为数组\textit{bank}的长度。计算合法的基因变化\textit{adj}需要的空间为O(n^2),队列中最多有n个元素,因此空间复杂度为O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值