解决大型语言模型(LLMs)在压缩到极低比特数(例如2到3位每参数)时的准确性问题

《Extreme Compression of Large Language Models via Additive Quantization》

Q: 这篇论文试图解决什么问题?

A: 这篇论文旨在解决大型语言模型(LLMs)在压缩到极低比特数(例如2到3位每参数)时的准确性问题。具体来说,论文提出了一种名为Additive Quantization for Language Models (AQLM) 的方法,它基于经典多码本量化(Multi-Codebook Quantization, MCQ)中的加性量化(Additive Quantization, AQ)算法,并针对语言模型的量化进行了适应性改进。

论文的主要贡献包括:

  1. 提出了一种实用的AQ方法,用于大型语言模型的后训练量化(post-training quantization)。

  2. 在Llama 2模型系列上评估了该算法的有效性,压缩比率为2-4位每参数。实验结果表明,AQLM在2-4位压缩范围内超越了先前最先进的算法,特别是在极端的2位量化情况下表现显著。

  3. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值