引言 🌟
在机器学习和人工智能的舞台上,大型语言模型(Large Language Models, LLMs)如同一颗璀璨的明星,吸引着众多研究者的目光。它们在自然语言处理的各个领域表现出色,然而,关于它们的卓越表现背后的理论分析仍然是一个未解之谜。本文旨在通过将通用自回归语言模型与马尔可夫链进行等价性分析,填补这一知识空白。
马尔可夫链与大型语言模型的奇妙关系 🔗
我们提出一个直观而又被忽视的观点:将LLMs视为在有限状态空间上运行的马尔可夫链。尽管LLMs的生成能力看似无限,但它们实际上有着有限的词汇量和上下文窗口,这使得所有可能的输入和输出序列都可以被枚举。通过这种视角,我们可以对LLMs的推理能力进行明确的表述。
马尔可夫链的定义 🧩
在形式上,我们定义一个马尔可夫链MC(Ω, Q),其中Ω是状态空间,Q是转移矩阵。我们发现,任何自回归模型都可以等价地表示为一个马尔可夫链,这为我们后续的理论分析奠定了基础。
转移矩阵的结构 🔢
我们可以通过转移矩阵Q来描述系统的行为。具体而言,对于一个具有词汇量T和上下文窗口K的自回归模型,其转移矩阵Q的稀疏性和块结构使得我们能够系统地捕捉LLMs的输出。