大型语言模型作为马尔可夫链的深度剖析

引言 🌟

在机器学习和人工智能的舞台上,大型语言模型(Large Language Models, LLMs)如同一颗璀璨的明星,吸引着众多研究者的目光。它们在自然语言处理的各个领域表现出色,然而,关于它们的卓越表现背后的理论分析仍然是一个未解之谜。本文旨在通过将通用自回归语言模型与马尔可夫链进行等价性分析,填补这一知识空白。

马尔可夫链与大型语言模型的奇妙关系 🔗

我们提出一个直观而又被忽视的观点:将LLMs视为在有限状态空间上运行的马尔可夫链。尽管LLMs的生成能力看似无限,但它们实际上有着有限的词汇量和上下文窗口,这使得所有可能的输入和输出序列都可以被枚举。通过这种视角,我们可以对LLMs的推理能力进行明确的表述。

马尔可夫链的定义 🧩

在形式上,我们定义一个马尔可夫链MC(Ω, Q),其中Ω是状态空间,Q是转移矩阵。我们发现,任何自回归模型都可以等价地表示为一个马尔可夫链,这为我们后续的理论分析奠定了基础。

转移矩阵的结构 🔢

我们可以通过转移矩阵Q来描述系统的行为。具体而言,对于一个具有词汇量T和上下文窗口K的自回归模型,其转移矩阵Q的稀疏性和块结构使得我们能够系统地捕捉LLMs的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值