在人工智能的快速发展中,模型的优化与提升成为了研究者们关注的焦点。尤其是在自然语言处理(NLP)领域,如何高效地利用少量样本进行学习,成为了一个重要的研究方向。本文将深入探讨一种名为 多阶段指令提议与优化(MIPROv2) 的新方法,并展示其在 DSPy 框架中的应用,特别是在 HotPotQA 数据集上的表现。
🌟 MIPROv2 的工作原理
MIPROv2 是一种优化程序的工具,它通过两个主要步骤来提升模型的性能:提议 和 优化。在提议阶段,MIPROv2 会生成一组候选的少量示例集和指令,这些示例和指令将作为超参数进行优化。在优化阶段,MIPROv2 会在指定数量的批次内评估这些候选组合,从而学习哪些组合能够带来最佳的性能。
具体而言,MIPROv2 的工作流程如下:
- 生成候选示例集:对于每个提示,MIPROv2 会生成多个候选的少量示例集。
- 优化组合:在每个批次中,优化器会评估不同组合的提示,利用训练输入的子集来学习最佳组合。
- 性能评估:通过在训练集上进行评估,