文章目录
  • 1. 核主成分分析(Kernel PCA, KPCA)
  • 例子
  • 数据集
  • 计算步骤
  • 结果解释
  • 2. 局部线性嵌入(Locally Linear Embedding, LLE)
  • 例子
  • 数据集
  • 计算步骤
  • 公式意义
  • 结论
  • 3. 等距映射(Isomap)
  • 4. t-分布邻域嵌入算法(t-SNE)



非线性子空间学习是一类

降维技术,旨在通过

非线性映射将高维数据转换到低维空间,从而发现数据中的潜在结构、减少冗余信息,并可能增强数据的可分离性,适用于

分类

聚类、可视化等多种任务。


与线性降维方法(如PCA、LDA)相比,非线性方法能更好地捕捉

复杂的数据分布。以下是一些常用的非线性子空间学习方法及其相关公式。

1. 核主成分分析(Kernel PCA, KPCA)

核方法通过将数据映射到高维特征空间,然后在该空间执行线性操作,实现了在原始输入空间中的非线性变换。KPCA是PCA的非线性扩展。

  • 公式:
  • 核函数 非线性子空间学习_数据,其中 非线性子空间学习_人工智能_02 是将输入数据 非线性子空间学习_数据_03 映射到高维特征空间的函数
  • 中心化核矩阵 非线性子空间学习_人工智能_04,其中非线性子空间学习_机器学习_05 是核矩阵,非线性子空间学习_数据集_06是长度为 非线性子空间学习_人工智能_07
  • 寻找最大的 非线性子空间学习_学习_08 使得 非线性子空间学习_数据集_09 最小,同时约束 非线性子空间学习_数据集_10(保证数据的无偏性),解得 非线性子空间学习_学习_08 后,低维表示为 非线性子空间学习_数据集_12

例子

核主成分分析(KPCA)是一个非线性降维技术,通过将原始数据映射到一个高维特征空间并在该空间执行PCA,来捕获数据中的非线性结构。以下是KPCA的一个具体计算示例,我们将使用一个简化的数据集和高斯核函数(RBF核)来进行说明。

数据集

假设有以下二维数据集,属于同一类别,但我们希望通过KPCA来发现潜在的非线性结构

样本编号

1

2

3

2

3

2

3

4

6

4

6

5

5

8

7

计算步骤
  1. 定义核函数:我们选择高斯核函数(RBF核)来映射数据到高维空间。RBF核函数定义为:
    非线性子空间学习_数据_15
    其中,非线性子空间学习_学习_16 是样本 非线性子空间学习_数据集_17非线性子空间学习_学习_18 之间的欧氏距离的平方非线性子空间学习_学习_19\gamma$ 是核宽度参数,控制了映射的非线性程度
  2. 计算核矩阵:基于RBF核函数,计算数据集中的所有点对之间的核相似度,形成核矩阵 ( K )。对于上述数据集,核矩阵 ( K ) 为:
    非线性子空间学习_人工智能_20
    假设 非线性子空间学习_机器学习_21,计算得:

非线性子空间学习_学习_22

  1. 中心化核矩阵:为了去除数据的平移影响,需要对核矩阵进行中心化处理,形成中心化核矩阵 非线性子空间学习_数据集_23
    非线性子空间学习_数据_24
    其中,非线性子空间学习_数据_25
  2. 计算特征值和特征向量:对中心化后的核矩阵 非线性子空间学习_数据集_23 进行特征分解,找到最大的几个特征值对应的特征向量。假设我们想要降到一维空间,那么就取最大的那个特征值 非线性子空间学习_数据_27 及其对应的特征向量非线性子空间学习_机器学习_28
  3. 构造低维表示:低维空间的表示 ( Z ) 可以通过原数据集 ( X ) 与特征向量 非线性子空间学习_数据_29 的内积得到,即:
    非线性子空间学习_数据_30
    其中,( n ) 是数据集中的样本数,非线性子空间学习_人工智能_31 是第 ( i ) 个样本在降维后的坐标。
结果解释

通过上述步骤,我们得到了每个样本在降维后的一维坐标 非线性子空间学习_机器学习_32,这些坐标反映了原始数据在非线性子空间中的位置,可能揭示了数据间的非线性关系。实际应用中,会根据具体情况调整核函数的参数 非线性子空间学习_数据_33

2. 局部线性嵌入(Locally Linear Embedding, LLE)

LLE试图保持每个点与其邻居间的线性关系,在低维空间中重构这种局部结构。

  • 公式:
  • 寻找权重 非线性子空间学习_学习_34 使得 非线性子空间学习_机器学习_35,其中非线性子空间学习_数据集_36 是点 非线性子空间学习_学习_37
  • 最优化问题:非线性子空间学习_学习_38,在保持 非线性子空间学习_数据_39 的约束下,其中 非线性子空间学习_学习_40
  • 解决方案通常涉及解决一系列的优化问题和约束条件。

例子

局部线性嵌入(LLE)是一种非线性降维技术 ,它通过在高维空间中寻找每个数据点的局部线性重构权重,然后在低维空间中保持这些权重关系来保持数据的局部结构。下面是LLE的一个简单计算示例。

数据集

假设我们有一个简单的二维数据集,包含四个点 (X):

样本编号

1

0

0

2

1

1

3

2

1

4

3

0

计算步骤
  1. 定义邻域:首先确定每个点的邻域,比如选择每个点最近的 (k) 个邻居,这里 (k=2)。由于数据集较小,我们简单地选择每个点的直接邻居(在实际应用中,可能需要使用更复杂的距离度量和选择策略)。
  2. 计算权重:对于每个点 非线性子空间学习_数据集_17,我们希望找到一组权重 非线性子空间学习_学习_44,使得 非线性子空间学习_数据集_17 可以通过其邻居 非线性子空间学习_学习_18

非线性子空间学习_机器学习_47

这个公式是局部线性嵌入(LLE, Locally Linear Embedding)的核心优化目标,用于计算每个数据点 非线性子空间学习_学习_48 在其局部邻域 非线性子空间学习_数据集_49 内的线性重构权重 非线性子空间学习_学习_50。下面是对公式的详细解释:

公式意义

非线性子空间学习_机器学习_47

  • 目标函数:
  • 非线性子空间学习_机器学习_52 表示我们要最小化的目标是关于权重 非线性子空间学习_学习_34
  • 非线性子空间学习_数据_54 是对每一个点 非线性子空间学习_数据_55 的表达式,其中 非线性子空间学习_数据集_36 表示点 非线性子空间学习_数据_55 的邻域,即距离 非线性子空间学习_数据_55 最近的几个点的集合。
  • 这个求和表达了点 非线性子空间学习_数据_55 通过其邻域内的点 非线性子空间学习_学习_60 来线性重构自身的误差的平方和。目标是最小化这个误差,意味着我们希望每个点能够很好地被其邻域内的点线性表示。
  • 约束条件:
  • 非线性子空间学习_学习_61:这个条件确保了权重的归一化,即所有邻域内点对 非线性子空间学习_数据_55 的贡献总和为1。这意味着 非线性子空间学习_数据_55
  • 非线性子空间学习_人工智能_64:要求所有的权重 非线性子空间学习_学习_34 都是非负的,这是因为权重代表了贡献度负值没有实际意义,而且在寻求重构点 非线性子空间学习_数据_55

对于这个简单的例子,手动计算每个点的权重:

  • 对于点1,其邻居是点2,理想情况下 非线性子空间学习_数据_67(如果只考虑最简单的线性插值)。
  • 对于点2,其邻居是点1和点3,假设等权重,则 非线性子空间学习_数据_68
  • 对于点3,其邻居是点2和点4,同样假设等权重,则 非线性子空间学习_机器学习_69
  • 对于点4,其邻居是点3,因此 非线性子空间学习_学习_70
  1. 重建误差最小化:虽然在这个简化的例子中,我们直接指定了权重,实际操作中,这些权重需要通过优化算法求解。但在本例中,我们继续基于上述分配的简单权重。
  2. 降维:有了这些权重后,下一步是在低维空间中找到新的坐标 (Y),使得低维空间中的点能够通过类似的权重组合重构回原始空间。设 (Y) 为低维嵌入,我们希望最小化重构误差:

非线性子空间学习_学习_71

由于这个例子过于简化,我们不进行详细的数学优化求解,但在实际操作中,这一步骤通常涉及迭代优化算法,如梯度下降。

结论

对于这个非常基础的例子,LLE的过程主要是为了演示思想,实际应用中LLE涉及更复杂的数学和计算过程,尤其是计算权重和优化低维坐标时。在真实数据集中,我们会使用算法自动确定权重并优化低维嵌入,可能还会涉及对邻域的选择、正则化项的添加等策略,以确保算法的稳定性和有效性。

3. 等距映射(Isomap)

Isomap是基于图论的降维方法,它首先构建数据点间的邻接图,然后计算两点间的最短路径长度,最后通过多维缩放(MDS)在低维空间中保持这些距离。

  • 公式:
  • 构建邻接图,计算所有对之间最短路径的距离矩阵 ( D )。
  • 解多维缩放问题:非线性子空间学习_数据集_72,其中 非线性子空间学习_人工智能_73

4. t-分布邻域嵌入算法(t-SNE)

t-SNE通过使用t-分布作为相似性度量,来优化高维和低维空间中点对之间的概率分布匹配。

  • 公式:
  • 高维空间中的相似度:非线性子空间学习_机器学习_74,使用高斯核。
  • 低维空间中的相似度:非线性子空间学习_数据集_75,但使用t-分布核。
  • 最小化KL散度:非线性子空间学习_数据集_76,通过梯度下降优化 ( Y )。