一、数据处理
1.1、 Loading raw input data
- 下载数据
//将数据下载到 /input 文件夹下
bash <(curl -fsSL git.io/getdeepdive) spouse_example
// 或者使用如下指令下载
bash deepdive load articles input/articles-1000.tsv.bz2
- 为这些数据在 app.ddlog 声明一个表格
articles(
id text,
content text
).
- using the input/articles.tsv.sh script, 运行,创建表,然后获取和加载数据,将input文件中的对应的文件导入postgresql数据库中
//建立链接(第一个参数为数据文件)
ln -s articles-1000.tsv.bz2 input/articles.tsv.bz2
// 执行脚本,同时会下载 Stanford's CoreNLP
deepdive do articles
// 查看是否导入成功,该指令会显示所匹配的字段
deepdive query '?- articles(id, _).'
1.2. Adding NLP markups
使用 Stanford’s CoreNLP 进行归一化词形、词性标注、命名实体识别、依存句法分析等工作。
- 现在来声明 output schema 结构 。
// In DDlog // ----------------------------- sentences(
doc_id text,
sentence_index int,
sentence_text text,
tokens text[],
lemmas text[],
pos_tags text[],
ner_tags text[],
doc_offsets int[],
dep_types text[],
dep_tokens int[] ).
- 使用 nlp_markup.sh 来调用封装好的 CoreNLP,CoreNLP 库 需要Java 8 支持。
# In DDlog
#-----------------------------
function nlp_markup over (
doc_id text,
content text
) returns rows like sentences
implementation "udf/nlp_markup.sh" handles tsv lines.
- 最后,指定 nlp_markup 函数在文章中的每一行都运行,并将输出的追加到 sentences 中
// In DDlog
// -----------------------------
sentences += nlp_markup(doc_id, content) :-
articles(doc_id, content).
- Again, to execute, we compile and then run (每当 DDlog 内容被改变,都要重新编译):
deepdive compile
deepdive do sentences
- 此时进行查看,将有 tokens and NER tags
deepdive query '
doc_id, index, tokens, ner_tags | 5
?- sentences(doc_id, index, text, tokens, lemmas, pos_tags, ner_tags, _, _, _).
'