激光SLAM与视觉SLAM基本概念及算法解析
激光SLAM与视觉SLAM基本概念
激光SLAM
- 基本概念:基于激光雷达(LiDAR)的SLAM技术,通过发射激光束并接收反射信号,生成环境的点云数据,利用点云匹配和几何特征实现定位与建图。其核心优势是测距精度高(可达厘米级)、对光照变化不敏感,但成本较高,且动态环境适应性较弱。
- 传感器:2D/3D激光雷达(如Velodyne、SICK、国产RPLIDAR)。
视觉SLAM
- 基本概念:基于摄像头(单目、双目、RGB-D或鱼眼相机)的SLAM技术,通过图像特征提取与匹配、光流跟踪或直接法计算相机位姿,并构建环境地图。其优势是成本低、信息丰富(含纹理和颜色),但受光照变化、动态物体和弱纹理环境影响较大。
- 传感器:单目/双目相机、RGB-D相机(如Kinect、RealSense)。
激光SLAM主流算法及实现方式
算法 | 实现方式 | 应用场景 | 特点 |
---|
Gmapping | 基于粒子滤波(Rao-Blackwellized粒子滤波),分离定位与建图,依赖里程计信息。 | 室内小场景建图(如扫地机器人) | 计算量小,静态环境下精度高,但高分辨率建图时噪声大。 |
Hector SLAM | 使用优化方法直接匹配激光帧与全局地图,无需里程计。 | 快速运动的室内机器人 | 适合高频激光雷达,但在大场景中易累积误差且无回环检测。 |
Cartographer | 结合子图(Submap)管理与图优化(Ceres库),支持多传感器融合(如IMU、GPS)。 | 大规模室内外建图(如谷歌机器人) | 鲁棒性强,支持回环检测与地图拼接,工程化程度高。 |
LOAM系列 | 分高低频模块:高频激光里程计(快速运动估计)+低频全局优化(点云配准与地图细化)。 | 自动驾驶、无人机三维建图 | 实时性好,精度高(长期霸榜KITTI数据集),但无回环检测。 |
LIO-SAM | 融合激光雷达与IMU,通过因子图优化实现紧耦合传感器融合。 | 复杂动态环境(如城市道路) | 抗运动畸变,适合高速场景,但计算资源需求较高。 |
视觉SLAM主流算法及实现方式
算法 | 实现方式 | 应用场景 | 特点 |
---|
ORB-SLAM系列 | 基于特征点法(ORB特征提取),结合词袋模型(BoW)进行回环检测,支持单目、双目和RGB-D。 | AR/VR、无人机导航 | 稳定性高,支持大规模场景,但对动态物体敏感。 |
DSO | 直接法(不依赖特征点),通过最小化光度误差优化相机位姿,生成稀疏点云。 | 高动态光照环境(如室外场景) | 计算速度快,适合弱纹理区域,但无回环检测且尺度漂移明显。 |
VINS-Mono | 融合单目视觉与IMU数据,采用滑动窗口优化和边缘化技术,实现高精度位姿估计。 | 移动设备(如手机、无人机) | 抗抖动能力强,支持实时定位,适合复杂运动场景。 |
LSD-SLAM | 基于直接法构建半稠密地图,通过图像梯度跟踪像素运动。 | 室内三维重建 | 地图信息较丰富,但对光照变化敏感,已逐渐被DSO取代。 |
RTAB-Map | 支持RGB-D和激光雷达融合,结合全局回环检测与记忆管理机制,优化长期建图一致性。 | 服务机器人、室内导航 | 多传感器兼容性强,适合长期运行的场景。 |
应用场景对比
激光SLAM
- 室内导航与建图:如扫地机器人(思岚科技RPLIDAR)、仓储AGV,依赖高精度2D栅格地图。
- 自动驾驶:隧道、地下车库等无GPS环境中的车辆定位,结合高精度点云地图实现厘米级定位。
- 工业检测:工厂环境中的自动化巡检机器人,需稳定处理静态障碍物。
视觉SLAM
- AR/VR:如苹果ARKit、谷歌ARCore,通过实时位姿跟踪叠加虚拟物体。
- 无人机与移动设备:大疆无人机、手机导航,依赖轻量化的单目或双目方案。
- 动态环境:服务机器人在人流密集区域的导航,利用视觉的纹理信息适应动态障碍物。
- 三维重建:建筑测绘、文物数字化,结合稠密点云生成高细节模型。
未来趋势
- 多传感器融合:激光+视觉+IMU的紧耦合方案(如LIO-SAM、VIO),提升鲁棒性与场景适应性。
- 深度学习结合:利用神经网络优化特征提取(如SuperPoint)、深度估计(如Monodepth),解决弱纹理与动态物体问题。
- 边缘计算与轻量化:面向嵌入式设备(如无人机、穿戴设备)的实时SLAM算法优化。
如需具体算法实现代码或更详细的技术对比,可参考开源项目(如Cartographer、ORB-SLAM3)及相关论文。