推荐算法实战

本文深入探讨了推荐系统中的关键环节,包括利用后验消费数据的召回策略及其挑战,特征工程中的bias特征处理,Embedding在提升模型扩展性中的作用,以及FFM和FM等模型的改进。此外,还讨论了FTRL、Wide&Deep、DCN等精排模型,以及如何处理新用户和新物料的冷启动问题。最后,文章涵盖了评估指标如AUC、GAUC和NDCG在推荐系统评估中的应用,以及ABTest和模型调试的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐算法实战

特征工程

  • 为什么说,用物料的后验消费数据做召回存在“幸存者偏差”?能将这些消费数据用于排序吗?
  • 使用物料的后验消费数据做召回,会放大“马太效应”,对新物料不友好,如何缓解?
  • 解释什么是bias特征?你能举出哪些bias特征的例子?
  • bias特征怎样接入模型?能否和其他正常特征一起喂入DNN底层?为什么?
  • 某男性新用户对“体育”这个分类的喜好程度未知,如何填充?
  • 某新物料的后验指标未知,如何填充?
  • 对观看次数、观看时长这样的特征,如何做标准化?
  • 某个物料曝光2次,被点击1次,如何计算它的CTR?
  • 有一个特征“某文章过去1天的点击率是10%”,如何将其构建成一个类别特征,并喂入推荐模型?

Embedding

  • 为什么说Embedding提升了推荐算法的扩展性?
  • FFM针对FM的改进在哪里?
  • 简述阿里Co-Action Network的基本思想?
  • 简述Parameter Server是如何应对推荐系统“高维稀疏”的数据环境的?
  • 什么是异步并发(ASP)中的“梯度失效”问题?即使如此,为什么在推荐系统中仍然常用?

精排

  • FTRL是如何保证“在线学习”的稳定性的?
  • FTRL是如何保证解的稀疏性的?
  • FTRL是如何解决高维稀疏特征受训机会不均匀的问题的?
  • FM相对LR的优势在哪里?
    • 不能只回答自动交叉
    • 是如何解决交叉特征太稀疏、受训机会少的问题的?
    • 是如何提高扩展性的?
  • FM对所有特征两两交叉,岂不是O(N^2)的复杂度?
    • 回答是的,这道题直接fail
    • 回答不是,要追问FM的实际复杂度是什么?如何实现的?
  • FM的缺点有哪些?
    • 提示:其中一个缺点是不灵活,怎么理解?
  • FFM相对于FM的改进有哪些?为什么要这么改进?
  • FFM相比于FM的缺点在哪里?(提示:效率)
  • Wide & Deep是如何做到兼顾“记忆”与“扩展”的?
  • 什么样的特征进Deep侧?什么样的特征进Wide侧?
  • Wide & Deep论文原文中说,训练Wide & Deep侧分别使用了两种优化器,你觉得有哪些道理?
  • DCN解决的是什么问题?
  • DCN v1和v2的差别在哪里?
  • DCN有哪些缺陷?(提示:输入输出的维度)
  • 简述基于Transformer做特征交叉的原理?
  • Transformer做特征交叉的缺点有哪些?(提示:输入输出维度、时间复杂度)
  • 你在建模行为序列中的每个元素时,一般会包含哪些信息?如何Embedding?
  • 每个用户的行为序列长度不同,如何处理?Truncate很简单,关键是如何解决Padding的问题?
    • 不解决的话,两个完全不同的序列,因为被填充的大量的0,而被模型认为相似
    • 提示:可以看看TensorFlow Transformer的源码,看看人家是如何解决的?
  • Target Attention的时间复杂度
  • Self-Attention的时间复杂度
  • DIN的建模思路是怎样的?怎么理解“千物千面”?
  • 每到“双十一”之类的促销季,用户的购买行为与他之前短期行为有较大不同,应该如何建模?
    • 其实就是长序列建模的问题,简单套用SIM不是不可以,但是仍然有效率问题
    • 开放问题,考察候选人的经验,以及思路是否开阔
  • 简述SIM的建模思想?你觉得它的优缺点有哪些?
  • 如果想在召回或粗排中建模用户长序列,怎么做?

召回

  • 传统的协同过滤,User CF和Item CF,哪个在工业界更常用?为什么?
  • 大规模、分布式的CF是如何实现的?
  • 基于矩阵分解的协同过滤,要分解的矩阵是超级稀疏的,分解这样的矩阵,需要事先将它缺失的地位都填充0吗?
  • 召回模型中如何处理用户行为序列?
    • 回答简单的Pooling的,是常规操作
    • 有没有可能也做target attention?拿什么当target?
  • NCE Loss的基本思想与计算公式
  • NEG Loss的基本思想与计算公式?它与NCE Loss是什么关系?
  • Marginal Hinge Loss的基本思想与计算公式
  • BPR Loss的基本思想与计算公式
  • Sampled Softmax的基本思想与计算公式
  • Sampled Softmax中温度修正的作用?调高温度有什么影响?调低温度有什么影响?
  • 采样修正的Q(t)应该如何设置?
  • 从算法机理来阐述热门物料对模型的影响?
    • 大家都知道热门物料对推荐结果的个性化造成负面影响,我需要你回答出它是如何造成这一负面影响的
  • 为了打压热门物料,热门物料当正样本,应该降采样还是过采样?
  • 为了打压热门物料,热门物料当负样本,应该降采样还是过采样?为什么?
  • Word2Vec中,Skip-Gram和CBOW有什么区别?哪种算法对于罕见词、罕见搭配更友好?
  • Airbnb的I2I召回,相比于word2vec,在正样本上有哪些创新?合理性在哪里?
  • Airbnb的I2I召回,相比于word2vec,在负样本上有哪些创新?合理性在哪里?
  • Airbnb的U2I召回,是如何解决“预订样本”太稀疏这个问题的?
  • Airbnb的U2I召回,在负样本上有哪些创新?
  • 直接套用Word2Vec用作召回,在正样本的选择上有哪些局限性?
    • Airbnb是如何突破这一局限性的?
    • 阿里的EGES是如何突破这一局限性的?
  • 阐述FM用于召回的原理与作法
    • 线下如何训练
    • 线上如何预测
    • 如何做到对新用户更友好
  • 召回随机负采样在实践中到底是怎么做的?提示:
    • 你可以离线采样,借助Spark在更大范围内采样,怎么实现?
    • 你可以Batch内负采样,怎么实现?
    • 你可以混合负采样,怎么实现?
    • 阐述以上几种方法的优劣
  • GCN与DNN在迭代公式上的区别在哪里?(提示:GCN没那么玄,真的只是一个小差别)
  • 如何在一个超大规模图上,训练GCN召回模型?希望听到:
    • Mini-Batch的训练细节
    • 邻居采样,挑出重要邻居
    • 邻居采样时有小Trick,否则会造成数据泄漏
  • 如何在一个超大规模图上,进行GCN推理,得到各节点的Embedding?
    • 希望候选人意识到推理与训练的不同
    • 要避免重复计算节点的Embedding
    • 要避免“邻居采样”那样的随机性

粗排

  • 你对改进粗排有什么思路?或者说,你觉得制约粗排模型性能的有哪些因素?
  • 粗排双塔与召回双塔的异同?提示有以下4方面的不同
    • 物料向量的存储方式
    • 样本,特别是负样本的选择
    • 损失函数的设计
    • 最终用户向量与物料向量的交互方式
  • 你知道双塔模型有哪些改进变形?
  • 用精排蒸馏粗排应该怎么做?
    • 提示:共同训练?两阶段?用什么Loss?各有什么优缺点?
    • 思考:蒸馏的假设有问题吗?
  • 粗排环节存在哪些“样本选择偏差”?如何纠偏?

重排

  • 常用的打散方式有哪些?
  • MMR的核心思路是什么?
  • 基于DPP的重排的核心思想是什么?
  • 如何构建DPP中的核矩阵L?基于怎样的先验假设?
  • 怎么证明如此构建的L是符合我们的先验假设的?
  • 基于上下文感知的重排模型的原理和流程
    • 如何构建样本?
    • 如何构建Loss?
    • 都应该包含哪些特征?
    • 模型训练完毕后,如何排序?(提示:顺序在训练时是已知的,但是预测时是未知的)

多任务 & 多场景

  • 为什么不为每个目标单独建模?
  • 为什么不直接针对最终目标建模?比如直接建模购买率,没必要建模点击率?
  • 你在工作场景中遇到的多目标推荐的问题?
    • 有哪些目标?
    • 使用了怎样的模型结构?
  • 排序时,我们既希望用户点击,又希望用户点开后观看尽可能长,如何建模?
    • 提示:时长目标的单位问题,如果用均方误差,其量纲要远远大于CTR的BCE loss
  • 你在训练模型时,是怎么将多个损失融合成一个损失的?
  • 你在排序时,是怎么将多个目标的打分融合成一个打分的?
    • 提示:要考虑到不同目标的打分存在天然的分布差异
  • 你遇到过多场景推荐的问题吗?你觉得难点在哪里?
  • 你要为一个服务全球的APP设计推荐模型,用户的国籍、语言这些特征要怎么使用?

冷启动

  • 新用户冷启,如何建模成一个多臂老虎机问题?
  • 新物料冷启,如何建模成一个多臂老虎机问题?
  • 怎么用Epsilon Greedy进行新用户冷启?
  • 怎么用UCB进行新用户冷启?
  • Bayesian Bandit的基本原理
  • Thompson Sampling用于新用户冷启的基本原理与流程
  • LinUCB用于新闻冷启动的基本原理与流程?
    • 这里的谁是老虎机?谁是手柄?
    • 如何建模手柄的收益?和哪些因素有关?
    • 如何求出每根手柄的参数?
    • 候选新闻集合是动态变化的,如何处理?
    • 观察到用户反馈后,如何更新每根手柄的收益分布?时间复杂度是什么?
  • 预测时遇到训练时未见过的新特征,是怎么处理的?
  • 训练时遇到训练时未见过的新特征,是怎么处理的?
  • 简述Meta-Learning的基本原理与流程
  • MAML作为一种特殊的meta-learning,特殊在哪里?
  • 简述MAML的训练流程
  • MAML应用于推荐系统的冷启动
    • 每个Task的粒度是什么?
    • 哪些参数需要从最优初值初始化?
  • 简述对比学习的训练流程和应用场景
  • 你将对比学习应用于推荐系统的什么场景?
  • 对比学习与向量化召回有什么异同?
  • 你是怎么做对比学习的?
    • 对比学习的样本从哪里来?
    • 数据增强是怎么做的?
    • 与主任务是怎么协同训练的?
  • 让你建立一个模型,预测新入库物料的后验CTR,以找到那些潜在爆款?
    • 样本怎么选?
    • 怎么设计特征?
    • 标签怎么收集?(提示:注意一下时间范围)
    • 怎么设计Loss?
    • 怎么用这个模型?
  • 设计对新用户友好的特征?你打算在模型中怎么用这些特征?

评估与调试

  • AUC的物理含义
  • AUC用在评价推荐性能时的缺陷
  • GAUC的计算方法
  • GAUC的缺点(提示:权重、位置)
  • NDCG的思路与计算方法
  • AUC能不能用于评价召回模型?
  • 你在评估召回模型时,主要使用哪些指标?
  • MAP的思路与计算方法
  • AB Test中应该如何划分流量?
  • 你在做AB Test时,一般会有哪些注意事项?
  • 用通俗语言解释一下什么是p-value?
  • 解释一下什么是Type I Error, Type II Error, Power?
  • 如何知道某个特征在你的模型中的特征重要性?
  • 一个多层的DNN,你想压缩一下,如何找到"滥竽充数"那一层?
  • 你碰到过“线下AUC涨了,线上AB指标没提升”的情况吗?怎么处理解决的?
  • 解释一下“特征穿越”现象,及如何解决?
  • 你碰到过“老汤模型”带来的麻烦吗?如何解决?
  • 新模型小流量上线后,我收集了一批线上数据D做测试样本,让新老模型都在D上预测并计算GAUC,我的作法有什么问题?正确方式应该怎么做?
  • 解释一下“链路一致性”问题。你有没有遇到过“链路一致性”问题?如何解决的?

其他

  • 以下你两个问题,只要你简历中出现GBDT相关项目,我一般都会问一下,能够答对的人不多
    • GBDT中的G代表梯度,那它是谁对谁的梯度?
    • 给你一个m*n的数据集,m是样本数,n是特征数,问这个梯度向量G有多长?
    • 这两个问题实际上是一体的,你只要搞清楚G的含义,自然知道它有多长
    • 这两个问题答对了,不代表你懂GBDT,但是答不上来,你肯定不懂GBDT。连G是谁对谁的梯度都搞不清楚,就好比你对外宣称自己是德华的忠实粉丝,但是人家问德华姓什么,你却回答不上来一样尴尬。
  • END -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值