Pytorch 快速测试GPU状态

# 判断是否安装了cuda
import torch
from torch.backends import cudnn

print(torch.cuda.is_available())  # 返回True则说明已经安装了cuda
# 判断是否安装了cuDNN
print(cudnn.is_available())  # 返回True则说明已经安装了cuDNN
a = torch.cuda.is_available()
print(a)
ngpu = 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3, 3).cuda())
print('CUDA版本:', torch.version.cuda)
print('Pytorch版本:', torch.__version__)
print('显卡是否可用:', '可用' if (torch.cuda.is_available()) else '不可用')
print('显卡数量:', torch.cuda.device_count())
print('是否支持BF16数字格式:', '支持' if (torch.cuda.is_bf16_supported()) else '不支持')
print('当前显卡型号:', torch.cuda.get_device_name())
print('当前显卡的CUDA算力:', torch.cuda.get_device_capability())
print('当前显卡的总显存:', torch.cuda.get_device_properties(0).total_memory / 1024 / 1024 / 1024, 'GB')
print('是否支持TensorCore:', '支持' if (torch.cuda.get_device_properties(0).major >= 7) else '不支持')
print('当前显卡的显存使用率:', torch.cuda.memory_allocated(0) / torch.cuda.get_device_properties(0).total_memory * 100,'%')

粘贴复制后,直接运行,测试会得到以下类似果。

True
True
True
cuda:0
NVIDIA GeForce RTX 3050 Ti Laptop GPU
tensor([[0.8380, 0.8804, 0.6489],
        [0.5282, 0.9585, 0.5476],
        [0.2108, 0.6176, 0.4576]], device='cuda:0')
CUDA版本: 11.6
Pytorch版本: 1.12.1
显卡是否可用: 可用
显卡数量: 1
是否支持BF16数字格式: 支持
当前显卡型号: NVIDIA GeForce RTX 3050 Ti Laptop GPU
当前显卡的CUDA算力: (8, 6)
当前显卡的总显存: 3.99951171875 GB
是否支持TensorCore: 支持
当前显卡的显存使用率: 0.0 %

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值